ACE I/D but not AGT (-6)A/G polymorphism is a risk factor for mortality in ARDS

Institut für Pharmakogenetik, Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany.
European Respiratory Journal (Impact Factor: 7.64). 04/2007; 29(3):482-8. DOI: 10.1183/09031936.00046106
Source: PubMed


The intrapulmonary renin-angiotensin system via tissue concentration of angiotensin II or bradykinin may have multiple effects on pulmonary pathophysiology. Therefore, it was investigated whether the presence of the D allele of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism or the A allele of angiotensinogen (AGT) promoter polymorphism (-6)A/G are independent risk factors for 30-day survival in acute respiratory distress syndrome (ARDS) patients. In a prospective study, adults (Germans of Caucasian ethnicity) with ARDS (n = 84) were recruited from the current authors' intensive care unit and genotyped for the ACE I/D and the AGT (-6)A/G polymorphisms, as were 200 healthy Caucasian controls. Mortality was increased in the ACE DD genotype compared with the I allele, and the ACE I/D polymorphism was an independent prognostic factor for 30-day survival. Patients with a homozygous DD genotype were at highest risk for death (hazard ratio 5.7; 95% confidence interval 1.7-19.2) compared with the II genotype. In contrast, the AGT (-6)A/G polymorphism was neither associated with an increased risk for development of ARDS nor with outcome. In patients with acute respiratory distress syndrome, the angiotensin-converting enzyme insertion/deletion polymorphism but not the angiotensinogen (-6)A/G promoter polymorphism is an independent risk factor with a pronounced effect on 30-day survival.

1 Follower
4 Reads
  • Source
    • "Although sepsis, pneumonia, aspiration, trauma, pancreatitis and multiple transfusion are recognized as the most common causes of ALI, only a small fraction of patients with these risk factors develop ALI [2]. Clinical and epidemiological studies have supported the hypothesis that genetic factors might play a part in the development and outcome of ALI [3-10]. Identification of genetic variants may provide new insight into the molecular pathogenesis of ALI and lead to the development of new diagnostic and therapeutic targets [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Apolipoprotein A1 (ApoA1) is the major apoprotein constituent of high density lipoprotein (HDL) which exerts innate protective effects in systemic inflammation. However, its role in the acute lung injury (ALI) has not been well studied. In the present study we investigated the association between polymorphisms of ApoA1 gene and ALI in a Chinese population. Methods Three polymorphisms of the ApoA1 gene (rs11216153, rs2070665, and rs632153) were genotyped by TaqMan method in 290 patients with sepsis-associated ALI, 285 patients sepsis alone and 330 age- and sex-matched healthy controls. Results We found rs11216153 polymorphism of ApoA1 was associated with ALI, the GG genotype and G allele was common in the ALI patients (76.9%, 88.1%, respectively) than both in the control subjects (55.8%, 75.8%, respectively) and in the sepsis alone patients (58.2%, 78.4%, respectively). Haplotype consisting of these three SNPs strengthened the association with ALI susceptibility. The frequency of haplotype GTG in the ALI samples was significantly higher than that in the healthy control group (OR = 2.261, 95% CI: 1.735 ~ 2.946, P <0.001) and the sepsis alone group (OR = 1.789, 95% CI: 1.373 ~ 2.331.P < 0.001). Carriers of the haplotype TTG had a lower risk for ALI compared with healthy control group (OR = 0.422, 95% CI: 0.310 ~ 0.574, P < 0.001) and sepsis alone group (OR = 0.491, 95% CI: 0.356 ~ 0.676, P <0.001). Conclusions These results indicated that genetic variants in the ApoA1 gene might be associated with susceptibility to sepsis-associated ALI in Han Chinese population.
    Full-text · Article · May 2014 · Lipids in Health and Disease
  • Source
    • "We found significant heterogeneities among the ORs (Pallele = 0.001, Pdominant = 0.04 and Precessive = 0.01) (Figures 1,2,3). The pooled OR derived from the four studies [16-18,21] did not indicate a significant association for any genotype model (Figures 123). There was no significant publication bias using either the Egger test or the rank correlation test (data not shown). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A previous meta-analysis reported a positive association between an insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme gene (ACE) and the risk of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Here, we updated this meta-analysis and additionally assessed the association of this polymorphism with ALI/ARDS mortality. We searched electronic databases through October 2011 for the terms "angiotensin-converting enzyme gene", "acute lung injury", and "acute respiratory distress syndrome," and reviewed all studies that reported the relationship of the I/D polymorphism in ACE with ALI/ARDS in humans. Seven studies met the inclusion criteria, comprising 532 ALI/ARDS patients, 3032 healthy controls, and 1432 patients without ALI/ARDS. We used three genetic models: the allele, dominant, and recessive models. The ACE I/D polymorphism was not associated with susceptibility to ALI/ARDS for any genetic model. However, the ACE I/D polymorphism was associated with the mortality risk of ALI/ARDS in Asian subjects ( Pallele < 0.0001, Pdominant = 0.001, Precessive = 0.002). This finding remained significant after correction for multiple comparisons. There is a possible association between the ACE I/D polymorphism genotype and the mortality risk of ALI/ARDS in Asians.
    Full-text · Article · Aug 2012 · BMC Medical Genetics
  • Source
    • "The I allele of the insertion/deletion Angiotensin Converting Enzyme (ACE) polymorphism is over-represented in climbers who have successfully ascended over 7000 metres (without supplemental oxygen)[41] and 8000 metres [42]. The same I allele is associated with increases survival in the Adult Respiratory Distresss Syndrome (ARDS), an archetypal hypoxic illness, in critically ill patients[40,43]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The physiological responses to hypoxaemia and cellular hypoxia are poorly understood, and inter-individual differences in performance at altitude and outcome in critical illness remain unexplained. We propose a model for exploring adaptation to hypoxia in the critically ill: the study of healthy humans, progressively exposed to environmental hypobaric hypoxia (EHH). The aim of this study was to describe the spectrum of adaptive responses in humans exposed to graded EHH and identify factors (physiological and genetic) associated with inter-individual variation in these responses. Observational cohort study of progressive incremental exposure to EHH. University human physiology laboratory in London, UK (75 m) and 7 field laboratories in Nepal at 1300 m, 3500 m, 4250 m, 5300 m, 6400 m, 7950 m and 8400 m. 198 healthy volunteers and 24 investigators trekking to Everest Base Camp (EBC) (5300 m). A subgroup of 14 investigators studied at altitudes up to 8400 m on Everest. Exercise capacity, exercise efficiency and economy, brain and muscle Near Infrared Spectroscopy, plasma biomarkers (including markers of inflammation), allele frequencies of known or suspected hypoxia responsive genes, spirometry, neurocognitive testing, retinal imaging, pupilometry. In nested subgroups: microcirculatory imaging, muscle biopsies with proteomic and transcriptomic tissue analysis, continuous cardiac output measurement, arterial blood gas measurement, trans-cranial Doppler, gastrointestinal tonometry, thromboelastography and ocular saccadometry. Of 198 healthy volunteers leaving Kathmandu, 190 reached EBC (5300 m). All 24 investigators reached EBC. The completion rate for planned testing was more than 99% in the investigator group and more than 95% in the trekkers. Unique measurements were safely performed at extreme altitude, including the highest (altitude) field measurements of exercise capacity, cerebral blood flow velocity and microvascular blood flow at 7950 m and arterial blood gas measurement at 8400 m. This study demonstrates the feasibility and safety of conducting a large healthy volunteer cohort study of human adaptation to hypoxia in this difficult environment. Systematic measurements of a large set of variables were achieved in 222 subjects and at altitudes up to 8400 m. The resulting dataset is a unique resource for the study of genotype:phenotype interactions in relation to hypoxic adaptation.
    Full-text · Article · Oct 2010 · BMC Medical Research Methodology
Show more