Pancreatic Regeneration in Chronic Pancreatitis Requires Activation of the Notch Signaling Pathway

ArticleinJournal of Gastrointestinal Surgery 10(9):1230-41; discussion 1242 · December 2006with18 Reads
Impact Factor: 2.80 · DOI: 10.1016/j.gassur.2006.08.017 · Source: PubMed

    Abstract

    Chronic pancreatitis as an inflammatory process characterized by morphological changes, pancreatic dysfunction, and pain. During pancreatic injury and repair the Notch signaling pathway is reinstated. The current study analyzed this pathway in chronic pancreatitis and characterized its influence on fibrogenesis. Real-time quantitative PCR and immunohistochemistry were used for expression studies. Notch activation was determined by a specific luciferase-HES-1-reporter gene constructs. Cells were stimulated with alcohol, glucose, bile acids, and steroids. Notch-2, -3, and -4 mRNA, were overexpressed in chronic pancreatitis specimens. The ligands Jagged-1, -2, and Delta-1 were highly overexpressed. Jagged-1 and Notch receptors were observed in nerves, regenerating exocrine cells, and endocrine cells. Delta staining was present in ductal but not in acinus cells and not in nerves. Activation of Notch signaling was detectable upon cell stimulation with glucose, steroids, and bile acids. High glucose levels were further associated with increased collagen-I production. The Notch pathway is reactivated during chronic pancreatitis. Among the stimuli activating the Notch pathway are steroids, high glucose levels, and bile acids. These findings suggest a possible role of the Notch pathway during pancreatic regeneration since Jagged-1 inhibits inducible collagen-1 production, suggesting a new mechanism of tissue repair in this disease.