Patient-specific analysis of the volume of tissue activated during Deep Brain Stimulation

Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA.
NeuroImage (Impact Factor: 6.36). 02/2007; 34(2):661-70. DOI: 10.1016/j.neuroimage.2006.09.034
Source: PubMed


Despite the clinical success of deep brain stimulation (DBS) for the treatment of movement disorders, many questions remain about its effects on the nervous system. This study presents a methodology to predict the volume of tissue activated (VTA) by DBS on a patient-specific basis. Our goals were to identify the intersection between the VTA and surrounding anatomical structures and to compare activation of these structures with clinical outcomes. The model system consisted of three fundamental components: (1) a 3D anatomical model of the subcortical nuclei and DBS electrode position in the brain, each derived from magnetic resonance imaging (MRI); (2) a finite element model of the DBS electrode and electric field transmitted to the brain, with tissue conductivity properties derived from diffusion tensor MRI; (3) VTA prediction derived from the response of myelinated axons to the applied electric field, which is a function of the stimulation parameters (contact, impedance, voltage, pulse width, frequency). We used this model system to analyze the effects of subthalamic nucleus (STN) DBS in a patient with Parkinson's disease. Quantitative measurements of bradykinesia, rigidity, and corticospinal tract (CST) motor thresholds were evaluated over a range of stimulation parameter settings. Our model predictions showed good agreement with CST thresholds. Additionally, stimulation through electrode contacts that improved bradykinesia and rigidity generated VTAs that overlapped the zona incerta/fields of Forel (ZI/H2). Application of DBS technology to various neurological disorders has preceded scientific characterization of the volume of tissue directly affected by the stimulation. Synergistic integration of clinical analysis, neuroimaging, neuroanatomy, and neurostimulation modeling provides an opportunity to address wide ranging questions on the factors linked with the therapeutic benefits and side effects of DBS.

Download full-text


Available from: Jaimie M Henderson
  • Source
    • "We created six quasi-static finite element electric field models (one for each patient) to characterize the DBS voltage distribution in brain tissue (Butson et al., 2007 ). For each model, a multiresolution finite element method (FEM) model was constructed using COMSOL 3.1 (Comsol Inc., Burlington, MA) and SCIRun/Bio-PSE (Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Medication resistant obsessive-compulsive disorder (OCD) patients can be successfully treated with Deep Brain Stimulation (DBS) which targets the anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS. Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex) was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex). Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results. Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.
    Full-text · Article · Feb 2016 · Frontiers in Neuroscience
    • "The simplified model, however, did not reproduce all of the experimental findings. It is possible that discrepancies between the model and experiments may be due to anisotropy and heterogeneity in the conductivity of brain tissue and/or the geometry of the target neural elements (figure 9), and future computational models should account for these features when designing electrodes for specific DBS applications (Butson et al 2007, Chaturvedi et al 2010, Frankemolle et al 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.
    No preview · Article · Jul 2015 · Journal of Neural Engineering
  • Source
    • "Model predictions of the voltage distribution in the brain during DBS were validated by in vivo recordings in a non-human primate[8]. Model predictions of the VTA/SFM were indirectly validated by detecting stimulation-induced side effects such as STN DBS-induced activation of the corticospinal tract[3,5]. These experiments and others provided evidence to demonstrate the accuracy of the modeling approach. "

    Full-text · Article · Jun 2015 · Brain Stimulation
Show more