Metal-Ion-Coordinating Properties of the Dinucleotide 2′-Deoxyguanylyl(5′→3′)-2′-deoxy-5′-guanylate (d(pGpG)3−): Isomeric Equilibria Including Macrochelated Complexes Relevant for Nucleic Acids

Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
Chemistry (Impact Factor: 5.73). 02/2007; 13(6):1804-14. DOI: 10.1002/chem.200600744
Source: PubMed


The interaction between divalent metal ions and nucleic acids is well known, yet knowledge about the strength of binding of labile metal ions at the various sites is very scarce. We have therefore studied the stabilities of complexes formed between the nucleic acid model d(pGpG) and the essential metal ions Mg2+ and Zn2+ as well as with the generally toxic ions Cd2+ and Pb2+ by potentiometric pH titrations; all four ions are of relevance in ribozyme chemistry. A comparison of the present results with earlier data obtained for M(pUpU)- complexes allows the conclusion that phosphate-bound Mg2+ and Cd2+ form macrochelates by interaction with N7, whereas the also phosphate-coordinated Pb2+ forms a 10-membered chelate with the neighboring phosphate diester bridge. Zn2+ forms both types of chelates with formation degrees of about 91% and 2.4% for Zn[d(pGpG)]cl/N7 and Zn[d(pGpG)]-cl/PO, respectively; the open form with Zn2+ bound only to the terminal phosphate group, Zn[d(pGpG)]-op, amounts to about 6.8 %. The various intramolecular equilibria have also been quantified for the other metal ions. Zn2+, Cu2+, and Cd2+ also form macrochelates in the monoprotonated M[H;d(pGpG)] species (the proton being at the terminal phosphate group), that is, the metal ion at N7 interacts to some extent with the P(O)2(OH)- group. Thus, this study demonstrates that the coordinating properties of the various metal ions toward a pGpG unit in a nucleic acid differ: Mg2+, Zn2+, and Cd2+ have a significant tendency to bridge the distance between N7 and the phosphate group of a (d)GMP unit, although to various extents, whereas Pb2+ (and possibly Ca2+) prefer a pure phosphate coordination.

1 Follower
3 Reads
  • Source
    • "The 94 Arctic AbPP mutation (E693G) (Nilsberth et al., 2001) in humans is 95 associated with clinical features of early-onset AD commencing at 96 52–62 years. In young mice, the Arctic mutation increased 97 intraneuronal Ab accumulation in an age-dependent manner 98 (Knobloch et al., 2007; Lord et al., 2006). Previous analyses of the 99 Tg-ArcSwe mice also depict perivascular amyloid angiopathy as 100 well as plaques confined to the neuropil. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a disease of major public health significance, whose pathogenesis is strongly linked to the presence of fibrillar aggregates of amyloid-beta (Aβ) in the aging human brain. We exploited the transgenic (Tg)-ArcSwe mouse model for human AD to explore whether oxidative stress and the capacity to repair oxidative DNA damage via base excision repair (BER) are related to Aβ pathology in AD. Tg-ArcSwe mice express variants of Aβ, accumulating senile plaques at 4-6 months of age, and develop AD-like neuropathology as adult animals. The relative mRNA levels of genes encoding BER enzymes, including 8-oxoguanine glycosylase (OGG1), AP endonuclease 1 (APE1), polymerase β (Polβ) and poly (ADP-ribose) polymerase 1 (PARP1), were quantified in various brain regions of 6 weeks, 4 months and 12 months old mice. The results show that OGG1 transcriptional expression was higher, and APE1 expression lower, in 4 months old Tg-ArcSwe than in wildtype (wt) mice. Furthermore, Polβ transcriptional expression was significantly lower in transgenic 12 months old mice than in wt. Transcriptional profiling also showed that BER repair capacity vary during the lifespan in Tg-ArcSwe and wt mice. The BER expression pattern in Tg-ArcSwe mice thus reflects responses to oxidative stress in vulnerable brain structures.
    Full-text · Article · Oct 2013 · Mechanisms of ageing and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: Group II introns are large metallo-ribozymes that use divalent metal ions in folding and catalysis. The 3'-terminal domain 6 (D6) contains a conserved adenosine whose 2'-OH group acts as the nucleophile in the first splicing step. In the hierarchy of folding, D6 binds last into the active site. In order to investigate and understand the folding process to the catalytically active intron structure, it is important to know the individual binding affinities of Mg2+ ions to D6. We recently studied the solution structure of a 27 nucleotide long D6 (D6-27) from the mitochondrial yeast group II intron Sc.ai5gamma, also identifying five Mg2+ binding sites including the one at the 5'-terminal phosphate residues. Mg2+ coordination to the 5'-terminal di- and triphosphate groups is strongest (e.g., log KA,TP = 4.55 +/- 0.10) and is evaluated here in detail for the first time. The other four binding sites within D6-27 are filled simultaneously (e.g., log KA,BR = 2.38 +/- 0.06) and thus compete for the free Mg2+ ions in solution, having a distinct influence on the individual affinities of the various sites. For the first time, we take this competition into account to obtain the intrinsic binding constants, describing a method that is generally applicable. Our data illustrates that any RNA molecule undergoing tertiary contacts to a second RNA molecule first needs to be loaded evenly and specifically with metal ions to compensate for the repulsion between the negatively charged RNA molecules.
    No preview · Article · Jan 2008 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.
    No preview · Article · Feb 2008 · Chemistry
Show more

Similar Publications