Arrestins and two receptor kinases are upregulated in Parkinson's disease with dementia

Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Neurobiology of aging (Impact Factor: 5.01). 04/2008; 29(3):379-96. DOI: 10.1016/j.neurobiolaging.2006.10.012
Source: PubMed


Arrestins and G proteins-coupled receptor kinases (GRKs) regulate signaling and trafficking of G protein-coupled receptors. We investigated changes in the expression of arrestins and GRKs in the striatum of patients with Parkinson's disease without (PD) or with dementia (PDD) at postmortem using Western blotting and ribonuclease protection assay. Both PD and PDD groups had similar degree of dopamine depletion in all striatal regions. Arrestin proteins and mRNAs were increased in the PDD group throughout striatum. Protein and mRNA of GRK5, the major subtype in the human striatum, and GRK3 were also upregulated, whereas GRK2 and 6 were mostly unchanged. The PD group had lower concentration of arrestins and GRKs than the PDD group. There was no statistical link between the load of Alzheimer's pathology and the expression of these signaling proteins. Upregulation of arrestins and GRK in PDD may confer resistance to the therapeutic effects of levodopa often observed in these patients. In addition, increased arrestin and GRK concentrations may lead to dementia via perturbation of multiple signaling mechanisms.

Download full-text


Available from: Vsevolod V Gurevich
  • Source
    • "Taken together, these data suggest that ARRDC3, PPP1R3C, and Sfpq interact with each other in regulating the age- and disease-specific gene expression of similar biological pathways such as bioenergetics and metabolism, which are very strong candidate categories implicated in the pathophysiological progressive changes of neurodegeneration [37–40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Little is known about the relationship between miRNA and mRNA expression in Alzheimer’s disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. Results In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. Conclusions Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-644) contains supplementary material, which is available to authorized users.
    Full-text · Article · Aug 2014 · BMC Genomics
  • Source
    • "G protein coupled receptor kinase isoforms, 2, 3, 5, and 6, are highly expressed in the human brain. In PD brain, however, GRK protein levels tend to be lower than controls (Bychkov et al., 2008) with conflicting reports regarding the co-localization of GRK5 in Lewy bodies (Arawaka et al., 2006; Takahashi et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Substantial evidence implicates abnormal protein kinase function in various aspects of Parkinson's disease (PD) etiology. Elevated phosphorylation of the PD-defining pathological protein, α-synuclein, correlates with its aggregation and toxic accumulation in neurons, whilst genetic missense mutations in the kinases PTEN-induced putative kinase 1 and leucine-rich repeat kinase 2, increase susceptibility to PD. Experimental evidence also links kinases of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways, amongst others, to PD. Understanding how the levels or activities of these enzymes or their substrates change in brain tissue in relation to pathological states can provide insight into disease pathogenesis. Moreover, understanding when and where kinase dysfunction occurs is important as modulation of some of these signaling pathways can potentially lead to PD therapeutics. This review will summarize what is currently known in regard to the expression of these PD-implicated kinases in pathological human postmortem brain tissue.
    Full-text · Article · Jun 2014 · Frontiers in Molecular Neuroscience
  • Source
    • "For Western blots, samples were prepared as previously described [8], [12], [13], [14]. To evaluate the GRK5 subcellular distribution by Western blot, goat anti-GRK5 antibody from R&D Systems (Minneapolis, MN) (1∶500) and rabbit anti-GRK5 (sc-565; 1∶500) from Santa Cruz Biotechnology (Santa Cruz, CA) were used. "
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
    Full-text · Article · Nov 2012 · PLoS ONE
Show more