Glia Maturation Factor Gamma (GMFG): A Cytokine-Responsive Protein During Hematopoietic Lineage Development and Its Functional Genomics Analysis

Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892-1822, USA.
Genomics Proteomics & Bioinformatics 09/2006; 4(3):145-55. DOI: 10.1016/S1672-0229(06)60027-2
Source: PubMed


Human hematopoiesis was evaluated using the techniques of controlled stem cell differentiation, two-dimensional gel electrophoresis-based proteomics, and functional genomics. We provide the first report that glia maturation factor gamma (GMFG) is a cytokine-responsive protein in erythropoietin-induced and granulocyte-colony stimulating factor-induced hematopoietic lineage development. Results from global functional genomics analysis indicate that GMFG possesses several other features: hematopoietic tissue-specific gene expression, a promoter concentrated with high-score hematopoiesis-specific transcription factors, and possible molecular coevolution with a rudimentary blood/immune system. On the basis of our findings, we hypothesize that GMFG is a hematopoietic-specific protein that may mediate the pluripotentiality and lineage commitment of human hematopoietic stem cells.

Download full-text


Available from: Lance A Liotta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We utilized a unique culture system to analyze the expression patterns of gene, protein, and cell surface antigen, and the biological process of the related genes in erythroid and myeloid differentiation and switching of hematopoietic stem cells (HSCs) in response to cytokine alterations. Gene-specific fragments (266) identified from five populations of cytokine-stimulated HSCs were categorized into three groups: (1) expressed specifically in a single cell population; (2) expressed in two cell populations, and (3) expressed in three or more populations. Of 145 defined cDNAs, three (2%) were novel genes. Protein two-dimensional gel electrophoresis and flow cytometry analyses showed overlapped and distinguished protein expression profiles in the cell populations studied. Biological process mapping of mRNAs expressed in erythroid and myeloid lineages indicated that mRNAs shared by both lineages attended 'core processes,' whereas genes specifically expressed in either lineage alone were related to specific processes or cellular maturation. Data from this study support the hypothesis that committed HSCs (E14 or G14) cells can still be redirected to develop into myeloid or erythroid cells when erythropoietin (EPO) is replaced with granulocyte-colony stimulating factor (G-CSF) under erythroid-cultured condition or G-CSF with EPO in myeloid-cultured environment, respectively. Our results suggest that genes or proteins co-expressed in erythroid and myeloid lineages may be essential for the lineage maintenance and switching in hematopoiesis.
    Preview · Article · Jan 2007 · Cell Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify bipotential precursor cells of erythroid and myeloid development in human bone marrow. Cells coexpressing CD13 and CD36 (CD13+CD36+) were investigated by analyzing cell-surface marker expression during erythroid development (induced with a combination of cytokines plus erythropoietin), or myeloid development (induced with the same cocktail of cytokines plus granulocyte colony-stimulating factor of bone marrow-derived CD133 cells in liquid cultures. CD13+CD36+ subsets were also isolated on the 14(th) day of cultures and further evaluated for their hematopoietic clonogenic capacity in methylcellulose. Colony-forming analysis of sorted CD13+CD36+ cells of committed erythroid and myeloid lineages demonstrated that these cells were able to generate erythroid, granulocyte, and mixed erythroid-granulocyte colonies. In contrast, CD13+CD36- or CD13-CD36+ cells exclusively committed to granulocyte/monocyte or erythroid colonies, respectively, but failed to form mixed erythroid-granulocyte colonies; no colonies were detected in CD13-CD36- cells with lineage-supporting cytokines. In addition, our data confirmed that erythropoietin induced both erythroid and myeloid commitment, while granulocyte colony-stimulating factor only supported the differentiation of the myeloid lineage. The present data identify some CD13+CD36+ cells as bipotential precursors of erythroid and myeloid commitment in normal hematopoiesis. They provide a physiological explanation for the cell identification of myeloid and erythroid lineages observed in hematopoietic diseases. This unique fraction of CD13+CD36+ cells may be useful for further studies on regulating erythroid and myeloid differentiation during normal and malignant hematopoiesis.
    Preview · Article · Aug 2007 · Experimental Hematology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophage colony-stimulating factor (M-CSF) (also known as CSF-1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have distinct effects on macrophage lineage populations, which are likely to be contributing to their functional heterogeneity. A comparative proteomic analysis of proteins released into culture media from such populations after M-CSF and GM-CSF exposure was carried out. Adherent macrophage populations, termed bone marrow-derived macrophage (BMM) and GM-BMM, were generated after treatment of murine bone marrow precursors with M-CSF and GM-CSF, respectively. Proteins in 16-h serum-free conditioned media (CM) were identified by two-dimensional gel electrophoresis and mass spectrometry. Respective protein profiles from BMM and GM-BMM CM were distinct and there was the suggestion of a switch from primarily signal peptide-driven secretion to non-classical secretion pathways from BMM to GM-BMM. Extracellular expression of cathepsins (lysosomal proteases) and their inhibitors seems to be a characteristic difference between these macrophage cell types with higher levels usually observed in BMM-CM. Furthermore, we have identified a number of proteins in BMM-CM and GM-BMM-CM that could be involved in various tissue regeneration and inflammatory (immune) processes, respectively. The uncharacterized protein C19orf10, a protein found at high levels in the synovial fluid of arthritis patients, was also differentially regulated; its extracellular levels were upregulated in the presence of GM-CSF.
    Full-text · Article · Feb 2011 · Immunology and Cell Biology
Show more