Intracellular cAMP: The "switch" that triggers on "spontaneous transient outward currents" generation in freshly isolated myocytes from thoracic aorta

University of Geneva, Genève, Geneva, Switzerland
AJP Cell Physiology (Impact Factor: 3.78). 05/2007; 292(4):C1502-9. DOI: 10.1152/ajpcell.00522.2006
Source: PubMed


Spontaneous transient outward currents (STOCs) have been reported in resistance and small arteries but have not yet been found in thoracic aorta. Do thoracic aorta myocytes possess cellular machinery that generates STOCs? It was found that the majority of aortic myocytes do not generate STOCs. STOCs were generated in 8.7% of freshly isolated aortic myocytes. Myocytes that did not generate STOCs we have called "silent" myocytes and myocytes with STOCs have been called "active." STOCs recorded in active myocytes were voltage dependent and were inhibited by ryanodine, caffeine, and charybdotoxin. Forskolin was reported to increase STOCs frequency in myocytes isolated from resistance arteries. Forskolin (10 microM) triggered STOCs generation in 35.1% of silent aortic myocytes. In 36.8% percent of silent myocytes, forskolin did not trigger STOCs but increased the amplitude of charybdotoxin-sensitive outward net current to 136.1 +/- 8.5% at 0 mV. Membrane-permeable 8BrcAMP triggered STOCs generation in 38.7% of silent myocytes. Forskolin- or 8BrcAMP-triggered STOCs were inhibited by charybdotoxin. 8BrcAMP also increased open probability of BK(Ca) channels in BAPTA-AM-pretreated cells. Our data demonstrate that, in contrast to resistance arteries, STOCs are present just in the minority of myocytes in the thoracic aorta. However, cellular machinery that generates STOCs can be "switched" on by cAMP. Such an inactive cellular mechanism could modulate the contractility of the thoracic aorta in response to physiological demand.

Download full-text


Available from: Rostislav Bychkov
  • Source
    • "Membrane currents from vascular myocytes were recorded as in our previous work [30], [24], [28]. Step-pulse, linear ramps, steady state protocols and data acquisition were performed at room temperature (22–25°C). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the "cocktail" of K(+) channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn(2+) and Hg(2+) inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K(+) currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn(2+) and Hg(2). 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
    Full-text · Article · Sep 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester, February 2009. Awarded 3 July 2009. Large-conductance Ca^2+ -activated K^+ (BKCa) channels play an important role in the regulation of vascular tone. They are activated by membrane depolarization and increases in local Ca^2+ concentration ([Ca^2+]). Their location in the plasma membrane allows them to be activated by transient releases of Ca^2+ from ryanodine receptors (RyR) in the sarcoplasmic reticulum, termed Ca^2+ sparks, leading to the efflux of K^+ known as a spontaneous transient outward current (STOC). Activation of BKCa channels in this manner provides a negative feedback mechanism to regulate vasoconstriction by hyperpolarizing the cell membrane and so reducing Ca^2+ influx through L-type voltage dependent Ca2+ channels. In this thesis I have investigated the relationship between [Ca^2+]i and membrane potential using inside-out patches excised from smooth muscle cells isolated from rat mesenteric artery. Whole-cell BKCa currents in these cells were also investigated both in the form of STOCs and by using voltage pulses to activate BKCa channels. The effects of the vasoconstrictors endothelin-1 (ET- 1) and angiotensin II (Ang II) on both pulse-induced BKCa currents and STOC amplitude and frequency were investigated. Single BKCa channels with a slope conductance of 189 pA were recorded and their activation was shown to be dependent on [Ca^2+]i and membrane potential. Membrane depolarization also increased BKCa whole-cell current and the frequency and amplitude of STOCs. ET-1 and Ang II were found to inhibit pulse-induced BKCa currents and this effect of ET-1 could be inhibited using a peptide PKC inhibitor. ET-1 and Ang II also caused a decrease in both STOC amplitude and frequency, although the decrease in frequency may be the result of the reduction in amplitude. Finally, 1, 2-dioctanoyl-sn-glycerol (DOG), an analogue of the endogenous PKC activator diacylglycerol (DAG), was seen to inhibit both BKCa whole-cell and single channel currents, possibly due to direct inhibition of BKCa channels.
    Preview · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to perinatal hypoxia results in alteration of the adult pulmonary circulation, which is linked among others to alterations in K(+) channels in pulmonary artery (PA) smooth muscle cells. In particular, large conductance Ca(2+)-activated K(+) (BK(Ca)) channels protein expression and activity were increased in adult PA from mice born in hypoxia compared with controls. We evaluated long-term effects of perinatal hypoxia on the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway-mediated activation of BK(Ca) channels, using isoproterenol, forskolin, and dibutyryl-cAMP. Whole-cell outward current was higher in pulmonary artery smooth muscle cells from mice born in hypoxia compared with controls. Spontaneous transient outward currents, representative of BK(Ca) activity, were present in a greater proportion in pulmonary artery smooth muscle cells of mice born in hypoxia than in controls. Agonists induced a greater relaxation in PA of mice born in hypoxia compared with controls, and BK(Ca) channels contributed more to the cAMP/PKA-mediated relaxation in case of perinatal hypoxia. In summary, perinatal hypoxia enhanced cAMP-mediated BK(Ca) channels activation in adult murine PA, suggesting that this pathway could be a potential target for modulating adult pulmonary vascular tone after perinatal hypoxia.
    No preview · Article · Feb 2011 · Journal of cardiovascular pharmacology
Show more