Pathologic and Molecular Heterogeneity in Imatinib-Stable or Imatinib-Responsive Gastrointestinal Stromal Tumors

Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
Clinical Cancer Research (Impact Factor: 8.72). 02/2007; 13(1):170-81. DOI: 10.1158/1078-0432.CCR-06-1508
Source: PubMed


Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the intestinal tract. Nearly all tumors express KIT protein, and most have an activating mutation in either KIT or PDGFRA. Therapy with selective tyrosine kinase inhibitors achieves a partial response or stable disease in approximately 80% of patients with advanced GIST. However, after an initial clinical response, some patients develop imatinib resistance. Our goal was to investigate the spectrum of pathologic response and molecular alterations in a group of GIST patients, clinically defined as having imatinib-stable/imatinib-responsive lesions, who underwent surgical resection.
Forty-three tumor nodules from 28 patients were available for pathologic and molecular analysis, which included genotyping for primary and secondary KIT/PDGFRA-mutations, cell cycle alterations, and biochemical activation status of KIT and downstream targets. The transcriptional changes of a subset of these tumors were compared with a group of imatinib-naive GISTs on a U133A Affymetrix expression platform.
The histologic response did not correlate with imatinib therapy duration or with proliferative activity. Second-site KIT mutation was identified in only one tumor nodule. Activation of KIT and downstream targets was consistent in all tumors analyzed. Ultrastructurally, a subset of tumors showed a smooth muscle phenotype, which correlated with overexpression of genes involved in muscle differentiation and function.
The histologic response to imatinib is heterogeneous and does not correlate well with clinical response. Second-site KIT mutations are rare in imatinib-responsive GISTs compared with imatinib-resistant tumors. The gene signature of imatinib-response in GISTs showed alterations of cell cycle control as well as up-regulation of genes involved in muscle differentiation and function.

Full-text preview

Available from:
  • Source
    • ") [19] [20] "
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated the efficacy of CK6, a KIT monoclonal antibody, in a panel of human gastrointestinal stromal tumor (GIST) xenograft models. Nude mice were bilaterally transplanted with human GIST xenografts (four patient derived and two cell line derived), treated for 3 weeks, and grouped as follows: control (untreated); CK6 (40 mg/kg, 3× weekly); imatinib (50 mg/kg, twice daily); sunitinib (40 mg/kg, once daily); imatinib + CK6; sunitinib + CK6 (same doses and schedules as in the single-agent treatments). Tumor volume assessment, Western blot analysis, and histopathology were used for evaluation of efficacy. Statistical analysis was performed using Mann-Whitney U (MWU) and Wilcoxon matched-pairs tests. CK6 as a single agent only reduced tumor growth rate in the UZLX-GIST3 model (P = .053, MWU compared to control), while in none of the other GIST models an effect on tumor growth rate was observed. CK6 did not result in significant anti-proliferative or pro-apoptotic effects in any of the GIST models, and moreover, CK6 did not induce a remarkable inhibition of KIT activation. Furthermore, no synergistic effect of combining CK6 with tyrosine kinase inhibitors (TKIs) was observed. Conversely, in certain GIST xenografts, anti-tumor effects seemed to be inferior under combination treatment compared to single-agent TKI treatment. In the GIST xenografts tested, the anti-tumor efficacy of CK6 was limited. No synergy was observed on combination of CK6 with TKIs in these GIST models. Our findings highlight the importance of using relevant in vivo human tumor xenograft models in the preclinical assessment of drug combination strategies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Apr 2015 · Translational oncology
  • Source
    • "Using a computational approach, we found that the predicted targets of miR-125a-5p are functionally associated with several biological processes, such as anti-apoptosis, cell cycle, cell differentiation, signal transduction and protein phosphorylation, which have been implicated in drug resistance of different cancer types. In line with the functional annotation of the miR-125a-5p predicted targets, deregulation of genes involved in cell cycle control, apoptosis and muscle differentiation has been associated with imatinib response in GIST patients (Agaram et al, 2007; Romeo et al, 2009). Among the predicted targets, we chose PTPN18 and STARD13 as candidate targets of miR-125a-5p. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Gastrointestinal stromal tumour (GIST) is mainly initialised by receptor tyrosine kinase gene mutations. Although the tyrosine kinase inhibitor imatinib mesylate considerably improved the outcome of patients, imatinib resistance still remains a major therapeutic challenge in GIST therapy. Herein we evaluated the clinical impact of microRNAs in imatinib-treated GISTs. Methods: The expression levels of microRNAs were quantified using microarray and RT–qPCR in GIST specimens from patients treated with neoadjuvant imatinib. The functional roles of miR-125a-5p and PTPN18 were evaluated in GIST cells. PTPN18 expression was quantified by western blotting in GIST samples. Results: We showed that overexpression levels of miR-125a-5p and miR-107 were associated with imatinib resistance in GIST specimens. Functionally, miR-125a-5p expression modulated imatinib sensitivity in GIST882 cells with a homozygous KIT mutation but not in GIST48 cells with double KIT mutations. Overexpression of miR-125a-5p suppressed PTPN18 expression, and silencing of PTPN18 expression increased cell viability in GIST882 cells upon imatinib treatment. PTPN18 protein levels were significantly lower in the imatinib-resistant GISTs and inversely correlated with miR-125a-5p. Furthermore, several microRNAs were significantly associated with metastasis, KIT mutational status and survival. Conclusions: Our findings highlight a novel functional role of miR-125a-5p on imatinib response through PTPN18 regulation in GIST.
    Full-text · Article · Oct 2014 · British Journal of Cancer
  • Source
    • "Assessment of histologic response of UZLX-GIST9 during treatment with different TKIs. Histologic response was graded by assessing the magnitude of necrosis, myxoid degeneration, and/or fibrosis on H & E staining: grade 1 (0%–10%), grade 2 (>10% and ≤50%), grade 3 (>50% and ≤90%), and grade 4 (>90%) [24,25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Acquired resistance to tyrosine kinase inhibitors (TKIs) in gastrointestinal stromal tumours (GISTs) is most commonly caused by secondary KIT or PDGFRA mutations. In this study we characterize a newly established GIST xenograft model, UZLX-GIST9, and evaluate the in vivo response of the model to standard TKIs (imatinib, sunitinib, and regorafenib). Methods Tumour fragments from a metastatic lesion of a GIST patient clinically progressing after treatment with imatinib, sunitinib and regorafenib were engrafted in a nude, immunodeficient mouse. Upon sequential passaging from mouse to mouse, tumour fragments were collected for histopathological and molecular characterization. The sensitivity of the model to treatment with TKIs was evaluated in 28 mice [passage 2 (n = 8), passage 4 (n = 20), 41 tumours]. Mice were grouped as follows: control (untreated), imatinib (50 mg/kg/BID), imatinib (100 mg/kg/BID), sunitinib (40 mg/kg/QD), and regorafenib (30 mg/kg/QD). After three weeks of oral treatment, tumours were collected for subsequent analysis. The efficacy of treatment was assessed by tumour volume, histopathology and Western immunoblotting. Results UZLX-GIST9 maintains the same typical morphological features and immunohistochemical characteristics as the original patient biopsy and expresses CD117 and DOG1. The KIT mutational profile (p.P577del + W557LfsX5+ D820G) remains the same as the original tissue sample originating from an intraspinal metastatic site. Three week treatment with different TKIs showed that the model is resistant to imatinib. Sunitinib induces tumour growth delay and regorafenib reduces the tumour burden by 30% as compared to control animals. While none of the TKIs had a significant effect on cell proliferation or cell survival, a remarkable increase of necrosis and significant reduction of microvessel density was observed under sunitinib and regorafenib. Western immunoblotting showed a mild reduction in KIT and AKT activation only in regorafenib treated tumours. Conclusions We established a novel human GIST xenograft, UZLX-GIST9, harbouring KIT exon 11 and 17 mutations and maintaining the pheno-and genotype of the original tumour. UZLX-GIST9 shows different levels of response to standard TKIs. This model will help to study TKI resistance and to explore novel treatment approaches for patients with TKI-resistant GIST.
    Full-text · Article · Aug 2014
Show more