ArticlePDF AvailableLiterature Review

Abstract and Figures

Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste-like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes.
Content may be subject to copyright.
Review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  13
Gastrointestinal regulation of food intake
David E. Cummings and Joost Overduin
Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington,
Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because
overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of
energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status
and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food
consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This
Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointes-
tinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric
hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine
cells, including novel taste-like pathways. The increasingly nuanced understanding of the mechanisms mediating
gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes.
Principles of satiation
“Satiation” referstoprocessesthat promote meal termination, 
thereby limiting meal size (1, 2). “Satiety” refers to postprandial 
events that affect the interval to the next meal, thereby regulat
-
ing meal frequency, which is also influenced by learned habits (3). 
Satiation results from a coordinated series of neural and humoral 
signals that emanate from the gut in response to mechanical and 
chemical properties of ingested food. Although the relevant sig
-
nals are commonly dubbed “satiety signals,” this term is usually a 
misnomer, because most of them promote termination of ongoing 
meals and donot delay subsequent meal initiation oraffect intake 
if delivered between meals (4).
A primary function of the gut is toachieve efficient nutrient 
digestion and absorption; many satiation signals optimize these 
processes by influencing gastrointestinal (GI) motility and secre
-
tion. Their additionalcapacity tolimit meal size enhances this 
control by restricting the rate at which nutrients reach the gut (5). 
Meals are typically stopped long before gastric capacity is reached, 
and when food is diluted with noncaloric bulking agents, the vol
-
umeingested increasesto maintain constantcaloric intake(6). 
Therefore,animalscanconsume muchlarger meals than they 
typically do. A major function of satiation is to prevent overcon
-
sumption duringindividual meals, therebyaverting deleterious 
consequences from incomplete digestion as well as excessive dis
-
turbances in circulating levels of glucose and other nutrients (7).
Satiation signals arise from multiple sites in the GIsystem, 
including the stomach, proximal small intestine,distal small intes
-
tine, colon, and pancreas, each of which is discussed below (Fig
-
ure 1 and Table 1). Ingested food evokes satiation by two primary 
effects on the GI tract — gastric distention and release of peptides 
from enteroendocrine cells. The hindbrain is the principal central 
site receiving input from short-acting satiation signals, which are 
transmitted both neurally(for example,byvagal afferents pro
-
jecting to the nucleusof the solitary tract) and hormonally (for 
example, by gut peptides acting directly on the area postrema [AP], 
which lies outside the blood-brain barrier). Although the percep
-
tion of fullness clearly involves higher forebrain centers, conscious 
awareness of GI feedback signals is not requiredfor satiation. Even 
animals whose hindbrain is surgically disconnected from the fore
-
brain exhibit satiation and respond to GI satiation peptides (8, 9). 
Therefore, gut-hindbrain communication is sufficient for satia
-
tion, although this normally interacts with higher cognitive cen
-
ters to regulate feeding.
Pathways relaying short-actingsatiation signalsfrom the gut 
to the hindbrain alsointeract at several levels with long-acting 
adiposity hormones involved in body-weight regulation, such as 
leptin and insulin. Through multifaceted mechanisms, adiposity 
hormones function as gain-setters to modulate the sensitivity of 
vagal and hindbrain responses to GI satiation signals. Adiposity 
hormones thereby regulate short-term food intake to achieve long-
term energy balance (10, 11).
Herewe provideanoverview of the regulationof feeding by 
gastric, intestinal, and pancreatic signals. We discuss interactions 
among thesesignals andbetween short-acting GI factorsand 
long-acting adiposity hormones. We also highlight new insights 
regardingmechanismsbywhich  enteroendocrine  cellssense 
and respond to nutrients. The increasingly sophisticated under
-
standing of these topics should help guide development of novel 
antiobesity therapeutics.
Gastric satiation signals
Densely innervated by sensory vagal and splanchnic nerves (12), 
the stomach is optimized to monitor ingestion. Long-standing evi
-
dence demonstrates that animals overeat with voluminous meals 
if food is drained from their stomach as they eat (13). This obser
-
vation, however, does not specifically implicate the stomach as a 
source of satiation signals, because the exodus of ingesta through 
a gastric cannula also precludes meal-related signals that would 
normally arise from postgastric sites.
Evidence that the stomach itself contributes to satiation derives 
from experiments involving cuffs that can reversibly close the pylo
-
rus (the exit from the stomach) and prevent passage of food down
-
stream. Studies using this model demonstrate that major gastric 
distentionalone is sufficient to terminate ingestion, but the amount 
of food required for this exceeds that eaten in a typical meal (2, 14). 
Nonstandard abbreviations used: AGRP, agouti-related protein; AP, area postrema; 
APO AIV, apolipoprotein A-IV; CCK, cholecystokinin; CCK1R, CCK receptor 1; DPP4, 
dipeptidyl peptidase-4; FA, fatty acid; GI, gastrointestinal; GLP, glucagon-like peptide; 
GLP1R, GLP1 receptor; MCH, melanin-concentrating hormone; NPY, neuropeptide 
Y; PP, pancreatic polypeptide; PYY, peptide YY.
Conflict of interest:The authors have declared that no conflict of interest exists.
Citation for this article:
J. Clin. Invest.117:13–23 (2007). doi:10.1172/JCI30227.
review series
14 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 1    January 2007
However, normal postprandial gastric distention does contribute 
to satiation when acting in concert with pregastric and postgastric 
stimuli (2, 14).Oraland gastric stimuli happenconcurrently during 
eating, and up to 40% of a meal empties into the intestine before 
meal termination (15). Therefore, pregastric, gastric, and intestinal 
satiation signals commence almost simultaneously, and they func
-
tion in unison, augmenting each other’s satiating effects (14).
Gastric satiationsignalsarise primarily from mechanical dis
-
tention, whereas those from the intestine derive largely from the 
chemical effects of food (16). Hence, with the pylorus closed, gas
-
tric loads limit ingestion solely on the basisof their volume, rather 
thantheir nutrientcontent, osmolarity, orpH(17).Although 
the stomach can sense nutrients (for example, to regulate gastrin 
release) (18), this does notseem tocontribute to satiation. The 
stomach wall is endowed with discrete neural sensors of tension 
(19), stretch (20), and volume (14). Output from these mechano
-
receptors is relayed to the brain by vagal and spinal sensory nerves 
(14, 21), using a complex array of neurotransmitters and neuro
-
modulators, includingglutamate, acetylcholine, nitricoxide, calci
-
tonin-gene-related peptide, substance P,galanin, and cocaine-and-
amphetamine-related transcript (14).
Bombesin-related peptides (for example, gastrin-releasingpeptide 
and neuromedin B), which are produced by gastric myenteric neu
-
rons, can reduce food intake when delivered pharmacologically 
to humans and other animals (2). Because it is not clear, however, 
whether these peptides are regulated by ingested nutrients, they are 
not discussed in this review of meal-related GI signals.
Intestinal satiation
The generally accepted assertionthat “gastric satiation is volumet
-
ric, intestinal satiation is nutritive”(16)reflects the importance of 
nutrients in mediating intestinal satiation, with a limited role for 
distention. Intestinal nutrient infusions reduce food intake in many 
species, including humans (14) — an effect that commences within 
seconds of nutrient infusion, indicating that at least some of the 
associated satiation signals emanate from the gut, rather than from 
postabsorptive sources(22). These, and other, findings demonstrate 
that the intestines play a dominant role in satiation.Many intestinal 
satiation signals inhibit gastric emptying, andthis probably helps 
limit ingestion by enhancing gastric mechanoreceptor stimulation. 
However,sham feedingexperiments show that adelayof gastricemp
-
tying is not required for intestinal signals toelicit satiation (14).
Mediators of intestinal satiation include a cadre of gut peptides 
that are secreted from enteroendocrine cells in response to ingest
-
ed food. These messengers diffuse through interstitial fluids to 
activate nearby nerve fibers and/or enter the bloodstream to func
-
tion as hormones (Figure 2). In conjunction with gastric disten
-
tion, satiation peptides educe the perception of GI fullness, pro
-
moting meal termination. Standards for physiologically satiating 
peptides were articulated in thepublication describing the first 
such agent, cholecystokinin (CCK) (2, 4). According to these cri
-
teria, a satiation factor should be released during food ingestion, 
and exogenous administration of it should decrease meal size in a 
dose-dependent manner — rapidly, transiently, and at physiologic 
concentrations, without causing illness.
Upper-intestinal satiation: CCK
CCK is the archetypal intestinal satiation peptide, first described 
as such three decades ago (4). It isproduced by I cells in the duode
-
nal and jejunal mucosa, as well as in the brain and enteric nervous 
system. Intestinal CCK issecreted in response to luminal nutrients, 
especially lipids and proteins. The CCK prepropeptide is processed 
by endoproteolytic cleavage into at least six peptides, ranging from 
8 to 83 amino acids in length (23). The multiple bioactive forms 
pertinent to feeding share a common carboxy-terminal octapep
-
tide with an O-sulfated tyrosine. The major circulating moieties 
are CCK8, CCK22, CCK33, and CCK58, although recent evidence 
suggests that CCK58 might be the only relevant endocrine form 
in some species(24). CCK peptides interact with two receptors 
expressed in the gut and brain. CCK receptor 1 (CCK1R, formerly 
known as CCK-A, for “alimentary”) predominates in the GI system, 
whereas CCK2R (formerly known as CCK-B, for “brain”) predomi
-
nates in the brain. Through endocrine and/or neural mechanisms, 
CCK regulates many GI functions, including satiation.
Figure 1
Principal sites of synthesis of GI peptides impli-
cated in the regulation of food intake. Depicted are
the main locations of production for each peptide,
although many of these molecules are detectable in
smaller quantities at other sites in the GI system. In
addition, most of them are also synthesized within
the brain, including CCK, APO AIV, GLP1, oxynto-
modulin, PYY, enterostatin, ghrelin, gastrin-releasing
peptide (GRP), neuromedin B (NMB), and possibly
PP. GI peptides that regulate appetite and do not
seem to be produced within the brain include leptin,
insulin, glucagon, and amylin.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  15
Whenperipherally injected immediately before a meal, CCK 
decreases meal size in a dose-dependent manner without affect
-
ingwater  intakeorcausing  illness  (4).ExogenousCCKalso 
triggers a stereotyped sequence of behaviors that rats normally 
display uponmeal completion, suggesting that it evokes the per
-
ception ofsatiationwithout internalfoodstimuli (25). Typifying 
a short-acting satiation signal, the anorectic effects of CCK are 
very short-lived and undetectable if the peptide is injected more 
than 30 minutes before meals.
Satiatingeffectsof CCK have been confirmed in numerous spe
-
cies, including humans, in whom the carboxy-terminal octapeptide 
reduces meal size and duration (26). Pharmacologic and genetic 
experiments indicate that CCK1R mediates CCK-induced satiation 
(27, 28). This receptor is expressed on vagal afferents, and peripheral 
CCK administration increases vagal-afferent firing,aswell as neuronal 
activity in the hindbrain region receiving visceral vagal input (29, 30). 
Furthermore, both subdiaphragmatic vagotomy and selective vagal 
deafferentation decrease the anorectic effects of peripheral CCK 
(31–33). These findings identifya critical vagal pathway for CCK-
inducedsatiation. However, CCK1Ris alsoexpressedinthe hindbrain 
and hypothalamus. Lesions of the hindbrain AP attenuate CCK-
induced satiation (34), and CCK microinjections into several hypo
-
thalamic nuclei decrease food intake(35).These observations suggest 
that CCK might relay satiation signals to the brain both directly and 
indirectly, and/or that central CCK contributes to satiation.
As is mentioned above, CCK-induced satiation could result in 
partfrom inhibitionof gastricemptying,thereby augmenting 
gastric mechanoreceptor stimulation. Some vagal-afferent fibers 
respondsynergisticallyto gastric distentionandCCK (36),and 
subthreshold doses of CCK reduce food intake in monkeys if com
-
bined with gastric saline preloads (37). Similarly, gastric distention 
augments the anorectic effects of CCK8 in humans (38). Howev
-
er, other studies show no differences in the satiating capacity of 
CCK8 between rats eating normally and those either sham fed or 
fitted with closed pyloriccuffs (33,39).These and other obser
-
vations indicate that CCK causes satiation through mechanisms 
additional to enhancing gastric distention signals.
The impact of eliminating CCK1R signaling supports a physi
-
ologic role for this receptor in satiation. Rats lacking CCK1R show 
increased meal size and gradually become obese (27), a phenotype 
possibly driven by overexpression of neuropeptide Y (NPY) in the 
dorsomedial hypothalamus(40). The obesity is fairly mild, howev
-
er, and is not present in CCK1R-deficient mice (28); this is consis
-
tent with the proposed function of CCK as a short-acting satiation 
signal. CCK1R antagonists also increase meal size and food intake 
in experimental animals (41, 42), and they increase hunger, meal 
size, and caloric intake in humans (43).
Despite the role of CCK in terminating individual meals,its 
importance in long-term body-weight regulation and its potential 
as an antiobesity target are questionable. Chronic CCK administra
-
tion in animals, with up to 20 peripheral injections per day, reduces 
meal size,but thisis offset by increasedmeal frequency, leavingbody 
weight unaffected (44). CCK administration decreases food intake 
acutely in humans by shortening meals (45), but anorectic effects 
dissipate after only 24 hours of continuousinfusion (46).Not 
surprisingly, trials of CCK1R agonists as antiobesity therapeutics 
have been unsuccessfulto date. The most important role for CCK 
in body-weight regulation might be its synergistic interaction with 
long-term adiposity signals, such as leptin (see below) (10, 11).
Lower-intestinal satiation: glucagon-like peptide-1
The ileal brake is a feedback phenomenon whereby ingested food 
activates distal-intestinal signals that inhibit proximal GI motility 
and gastric emptying (47). It is mediated by neural mechanisms 
and several peptides that are also implicated in satiation. These 
engage a behavioral brake on eating to complement the ileal brake, 
restraining the rate of nutrient entry into the bloodstream (5). One 
such peptide is glucagon-like peptide-1 (GLP1). It is cleaved from 
proglucagon, which is expressed in the gut, pancreas, and brain 
(48). Other proglucagonproducts include glucagon (a counter-
regulatory hormone), GLP2 (an intestinal growth factor), glicentin 
(a gastric acid inhibitor), and oxyntomodulin. Although several of 
these peptides are implicated in satiation, evidence is strongest for 
GLP1 and oxyntomodulin.
Table 1
Selected GI and pancreatic peptides that regulate food intake
Peptide Main site of synthesis Receptors mediating Sites of action of peripheral Effect on
feeding effects peptides germane to feeding food intake
A
Hypothalamus Hindbrain Vagus nerve
CCK Proximal intestinal I cells CCK1R X X X
GLP1 Distal-intestinal L cells GLP1R X? X? X
Oxyntomodulin Distal-intestinal L cells GLP1R and other X
PYY
3–36
Distal-intestinal L cells Y2R X X
Enterostatin Exocrine pancreas F1-ATPase β subunit X
APO AIV Intestinal epithelial cells Unknown X X
PP Pancreatic F cells Y4R, Y5R X X
Amylin Pancreatic β cells CTRs, RAMPs X X
GRP and NMB Gastric myenteric neurons GRPR X X
Gastric leptin Gastric chief and P cells Leptin receptor ? ? X
Ghrelin Gastric X/A–like cells Ghrelin receptor X X X
CTRs, calcitonin receptors; RAMPs, receptor activity–modifying proteins; GRP, gastrin-releasing peptide; NMB, neuromedin B; GRPR, GRP receptor. X?
indicates that it is unclear whether physiologically relevant quantities of GLP1 from the gut evade DPP4-mediated degradation in blood to activate GLP1
receptors in the brain, although these receptors might interact with CNS GLP1 to regulate food intake. ? indicates that it seems very unlikely that gastric
leptin interacts in a physiologically meaningful way with leptin receptors in the hypothalamus or hindbrain, which are important targets of leptin secreted
from adipocytes.
A
Effect of peripheral peptides on food intake. In some cases, central administration yields opposite results.
review series
16 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 1    January 2007
GLP1 is produced primarily by L cells in the distal small intes-
tine andcolon,where itcolocalizeswith oxyntomodulinand 
peptide YY (PYY). Ingested nutrients, especially fats and carbo
-
hydrates, stimulate GLP1 secretion by indirect, duodenally acti
-
vated neurohumoral mechanisms,as wellas bydirect contact 
within thedistalintestine (49).Thetwoequipotent bioactive 
forms, GLP1
7–36
amideand GLP1
7–37
, are rapidly inactivatedin 
the circulation by dipeptidyl peptidase-4 (DPP4) (50). In addition 
to engagingtheileal brake, GLP1 accentuates glucose-dependent 
insulin release, inhibits glucagonsecretion, and increases pancre
-
atic 
βcellgrowth (48). Therefore, DPP4-resistant GLP1 conge-
ners are being developed to treat diabetes.
GLP1 decreases food intake inseveral species (51, 52), includ
-
ing humans (53). Peripheral injections elicit satiety among nor
-
mal-weight (54), obese (55), and diabetic (56) persons. Important
-
ly, patients with diabetes treatedwitheither GLP1 orthe GLP1 
receptor (GLP1R) agonist exenatide lose weight progressively in 
trials lasting up to two years (57, 58). This is especially remarkable 
because improved glycemic controlachievedwith otheragents 
typically promotes weight gain.
The mechanismsunderlying GLP1-inducedanorexia are not 
fully known but involve vagal and possiblydirectcentral path
-
ways.Anorectic effectsaremediatedspecifically byGLP1R, as 
they are absentin GLP1R-deficient mice and are reversed with 
selective GLP1R antagonists (59). GLP1R is expressed by the gut, 
pancreas,brainstem, hypothalamus, and vagal-afferent nerves 
(48). The vagus is required for peripheral GLP1-induced anorexia, 
which is abolished by vagal transection or deafferentation (60, 61). 
Whether peripheral GLP1 also functionsthroughcentral receptors 
is questionable. The peptide can cross the blood-brain barrier, but 
it seems unlikely that physiologically relevant quantities of endog
-
enous peripheral GLP1 evade peripheral DPP4 degradation and 
penetrate the brain. However, GLP1 is produced by brainstem neu
-
rons that project to hindbrain and hypothalamic areas germane 
to energy homeostasis, possibly regulating appetite. Activation of 
hypothalamic GLP1R decreases food intake without causing ill
-
ness, whereas GLP1R activationin theamygdalaelicitsmalaise 
(62). Although pharmacologic use of exenatide can stimulate the 
illness pathway, nausea is not the only mechanism reducing food 
intake. Thereis little correlation between the severityof nausea 
and the amount of weight lost, and doses of exenatide too low to 
cause nausea do promote weight loss.
AlthoughGLP1 administration canreduce foodintake, the 
physiologic importance of GLP1 in feeding was challenged by the 
observation that GLP1R-deficient mice have normal food intake 
and body weight (63).Regardless of its physiologic significance 
in energy homeostasis, GLP1R overstimulation offers an attrac
-
tive pharmacologic antiobesity strategy, because it reduces body 
weight while independently ameliorating diabetes.
Lower-intestinal satiation: oxyntomodulin
LikeGLP1,oxyntomodulinis  aproglucagon-derivedpeptide 
secreted from distal-intestinal L cells in proportion to ingested cal
-
ories. In rodents, exogenous administration decreases food intake 
while increasing energy expenditure, and chronic injections reduce 
body-weight gain (64, 65). In humans, i.v. infusion acutely lessens 
hunger and single-meal food intake (66), and repeated injections 
decreased body weight by 0.5 kg/wk more than placeboin a 4-week 
trial(67). In this study, oxyntomodulin reduced buffet-meal intake 
(without decreasing palatability) by 25% at the beginning of the 
trial and by 38% attheend, indicating notachyphylaxis. Repli
-
cating animal results, the regimen also increased activity-related 
energy expenditure (68).
Although the mechanisms mediating these effects are enigmatic, 
GLP1R is probably involved, since oxyntomodulin does not alter 
feeding in GLP1R-deficient mice (59), and the GLP1R antagonist 
exendin
9–39
blocks oxyntomodulin-induced anorexia (64). Addi-
tional pathways are implicated, however, as oxyntomodulin binds 
GLP1R100 times less avidly than GLP1 does, yet they elicit anorex
-
ia at equimolar doses (64). The peptides also have different CNS 
targets — oxyntomodulin activates neurons in the hypothalamus 
(65), whereas GLP1 does so in the hindbrain and other autonomic 
Figure 2
Topography of enteroendocrine cells and absorptive enterocytes on
a villus within the small-intestinal wall. Enteroendocrine cells sense
nutritive and non-nutritive properties of luminal food and, in response,
release satiation peptides from their basolateral aspect. These signals
diffuse through the lamina propria to activate nearby vagal- and spinal-
afferent fibers from neurons within the nodose and dorsal root ganglia,
respectively, as well as myenteric neurons. Satiation peptides can
also enter the bloodstream to act distantly as hormones. Gut-peptide
release is regulated not only by luminal nutrients but also by somatic
signals. The basolateral side of enteroendocrine cells bears recep-
tors that respond to neurotransmitters, growth factors, and cytokines.
Neurotransmitters mediate duodenal-ileal communication to regulate
L cell secretion, and they enable central modulation of gut-peptide
release. Whether vagal- or spinal-afferent nerves are directly acti-
vated by ingested nutrients is uncertain. Although vagal- and spinal-
afferent fibers approach the abluminal aspect of enteroendocrine cells
and enterocytes, they do not form synapse-like contacts with these
epithelial cells, nor do they extend to the intestinal lumen. Some sub-
epithelial nerve fibers might respond to luminal chemicals that diffuse
across the epithelium, such as FAs, but this applies only to short-chain
FAs, which do not efficiently elicit satiation (116). Other vagal-afferent
fibers respond selectively to intestinal carbohydrates or fats. Although
it is theoretically possible that these neurons sense nutrients in the
extracellular space, it is more clearly established that signaling mol-
ecules released from enteroendocrine cells mediate macronutrient-
specific neural activation.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  17
control areas (69). Moreover, intrahypothalamic exendin
9–39
inhib-
its anorecticeffectsofoxyntomodulinbut notGLP1(65),and 
studies with GLP1R-deficient mice indicate that the two peptides 
differentially regulate feeding and energy expenditure (59).
The crystal structure of oxyntomodulin has been solved, and this 
advance should facilitate the rational design of oxyntomodulin 
peptidomimetics to be tested as oral antiobesity pharmaceuticals.
Lower-intestinal satiation: PYY
Thepancreatic polypeptide–fold (PP-fold) family includes PYY, 
NPY, and PP. All are 36–amino acid peptides that require carboxy-
terminal amidation for bioactivity and share the PP-fold structural 
motif. They interact with a family of receptors(Y1R, Y2R, Y4R, 
Y5R, and Y6R) that couple toinhibitoryG proteins.NPY isan 
orexigenic hypothalamic neuropeptide; PP is discussed below.
PYY isproduced mainlyby distal-intestinalLcells, mostof 
whichcoexpress GLP1.It is secreted postprandiallyin propor
-
tion to caloric load, with a macronutrient potency of lipids being 
greater than that of carbohydrates, which is greater than that of 
proteins(70). As with GLP1, postprandial secretionis biphasic, 
initially stimulated by atropine-sensitive neural projections from 
the foregut,followed bydirect nutrient stimulation in the hindgut 
(71). PYY
1–36
 is rapidly proteolyzed by DPP4; unlike GLP1, howev-
er, the cleaved product, PYY
3–36
, is bioactive. Like GLP1, PYY delays 
gastric emptying,
contributing to the ileal brake (47).
A roleforPYY
3–36
in satiation was asserted in a recent set of studies 
heralding this peptide as a promising antiobesity therapeutic (72, 
73). It was reported thatperipheralPYY
3–36
administration, at doses 
generating physiologic postprandial blood excursions, reducedfood 
intake and body weight in rats. In humans, i.v. infusion replicating 
postprandialPYY
3–36
concentrations lessened hunger and decreased 
buffet-meal intake by 36%, without causing nausea, affecting food 
palatability, or altering fluid intake. The reduced food intake was 
not followed by compensatory hyperphagia. Interestingly, PYY
3–36
levels were reported to be lower in obese than in lean persons, con
-
sistentwith arole inobesitypathogenesis. Moreover,anorexia 
induced by PYY
3–36
 was fully intact in obese individuals, in contrast 
to obesity-associated resistance to the anorectic adiposity hormones 
leptin and insulin. These findingssuggested tantalizing therapeutic 
potential for PYY
3–36
 and related peptidomimetics.
However, reportsthat PYY
3–36
causes anorexia surprised some 
investigators, because central administration of either PYY
1–36
 or 
PYY
3–36
potently increases food intake(74). To explain this paradox, 
a mechanistic model was formulated, based on Y receptor subtype 
selectivity and accessibility (72). PYY
1–36
 activates all Y receptors, 
and orexigenic effects are predicted from its interactions with Y1R 
and Y5R, which are expressed in the hypothalamic paraventricular 
nucleus and are thought to mediate NPY-induced feeding.Accord
-
ingly, the feeding effectsofcentral PYY are attenuated inboth 
Y1R-deficient and Y5R-deficient mice (75). PYY
3–36
selectively acti-
vates Y2R and Y5R, and icv administration of this peptide might 
increase food intake through Y5R. Circulating PYY
3–36
, however, 
was hypothesized to gain access selectively to Y2R in the hypotha
-
lamic arcuate nucleus, an area believed by some to be accessible to 
blood. In the hypothalamus, Y2R is a presynaptic autoinhibitory 
receptor on orexigenic neurons that express both NPYand agouti-
related protein (AGRP), known as NPY/AGRP neurons. Therefore, 
the model proposes that circulating PYY
3–36
 reduces food intake 
byinhibiting NPY/AGRPneurons through Y2R,therebydere
-
pressing adjacent anorectic melanocortin-producing cells, which 
areinhibited by NPY/AGRP neurons (72). Consistent withthis 
model, the feeding effects of PYY
3–36
 are abolished by pharmaco-
logic or genetic blockade of Y2R (61, 72, 76). Furthermore, PYY
3–36
administration decreases hypothalamic NPY expression invivo, 
and it decreases NPY while increasing 
α-melanocyte-stimulating 
hormone release from hypothalamic explants. Finally, intra-arcu
-
ate injections of PYY
3–36
inhibit food intake, whereas diffuse icv 
injections do the opposite (72).
Despite these findings supporting a hypothalamic mechanism of 
action of peripherally administered PYY
3–36
, Y2R is also expressed 
by vagal-afferent terminals (77), and some investigators hypoth
-
esize vagal mediation. Supporting this assertion, anorectic effects 
and arcuate neuronal activation elicited by peripheral PYY
3–36
were 
eliminated by either subdiaphragmatic vagotomy or transection of 
hindbrain-hypothalamic pathways (60, 77).
Severallaboratoriesreported difficulties in replicatingano
-
rectic effects of peripheral PYY
3–36
administration, despite using 
numerous rodent models, experimental protocols, and chemically 
validated PYY
3–36
 preparations (78). However, several other groups 
have confirmed anorectic and weight-reducing properties of this 
peptide in rodents (61, 76, 79–83) and nonhuman primates (84). 
Because stress reduces food intake, potentially masking additional 
anorectic effects, differences in the habituation of animals to exper
-
imental procedurescould explain some of these discrepancies (79), 
although this does not settlethe entire debate. The timing of injec
-
tions is also important, efficacy being lost at certain times of day. 
The original mechanistic model based on hypothalamic-Y2R-medi
-
ated NPY inhibition predicts that anorectic effects of PYY
3–36
 would 
be maximal at times when arcuate NPY is elevated. Indeed, the ini
-
tial findings were reported from rodents that were fasting or in the 
early dark cycle — times when NPY is naturally induced (72).
In summary, the anorectic effects of peripheral PYY
3–36
 admin-
istration in rodents are subtleand vulnerable tovicissitudes of 
animal handling, as well as the dose, route, and timing of injec
-
tions. Althoughthis might callintoquestion thepragmatism 
ofPYY-basedantiobesity therapeutics,anorectic effectsofthe 
peptide seem to be more robust in primates than in rodents, and 
the findings in humans have been corroborated (70). Nevertheless, 
some pharmaceutical-industry support for clinical development 
of intranasal PYY
3–36
 has abated because of insufficient efficacy.
Fat-specific satiation peptides: enterostatin and
apolipoprotein A-IV
SomeGI  peptides are  specificallystimulated  by fat  ingestion 
and subsequently regulate intake and/or metabolismoflipids. 
Enterostatin is a pentapeptide cleaved from procolipase, which is 
secreted from the exocrine pancreas in response to ingested fats 
to facilitatetheir digestion. Procolipase isalso produced in the 
gut and several brain areas pertinent to energy homeostasis (85). 
Both peripheral and central enterostatin administration decreases 
dietary fatintake in animals, and enterostatin-receptorantago
-
nists dotheopposite(86).The mechanismsunderlyingthese 
effects seem complex but involve the F1-ATPase 
β subunit as the 
putative enterostatin receptor (87), with downstream mediators 
including melanocortins and the 5-hydroxytryptamine (serotonin) 
receptor1B (88). Unfortunately,enterostatinadministration to 
humans has thus far shown no effects on foodintake, appetite, 
energy expenditure, or body weight (89).
Apolipoprotein A-IV (APO AIV) is a glycoprotein secreted from 
the intestine in response to fat absorptionand chylomicron forma
-
review series
18 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 1    January 2007
tion (90). It is used to package digested lipids for transit through 
lymphatics to blood. It is also produced in the hypothalamic arcu
-
ate nucleus.Exogenous administration of APO AIV decreases meal 
size, food intake, and weight gain in rats, whereas APO AIV–spe
-
cific antibodies do the opposite (91). APO AIV is hypothesized to 
represent a link between short- and long-term regulation of lipid-
related energy balance (90).
Pancreatic satiation peptides: PP and amylin
PP is produced in specialized islet cells under vagal control, and 
its secretion is stimulated postprandially in proportion to caloric 
load (92). Acting primarilyon peripheral and central Y4R and Y5R, 
it influences biliary and exocrine pancreatic function, gastric acid 
secretion, and GI motility. Whether PP has an important role in 
energyhomeostasis iscontroversial, in part because peripheral 
administration decreases feeding, whereas central administration 
increases it. Reminiscent of PYY, this disparity might result from 
differential access to Y receptors — circulating PP decreasing food 
intake through Y4R in the AP and central PP increasing it through 
Y5R deeper in the brain. Peripheral PP injectionsreduce food 
intake andweight gain inwild-type and geneticallyobese 
ob/ob
mice (93), and administration to humans decreases appetite and 
food intake, independently of gastric emptying (94).
Amylin,a peptide cosecreted with insulin postprandially by pan
-
creatic 
βcells, inhibits gastric emptying, gastric acid, and gluca-
gon secretion. It can also decrease meal size and food intake after 
Figure 3
Similarities in nutrient-sensing mechanisms used by taste-receptor cells of the tongue and enteroendocrine cells of the intestine (exemplified by
an L cell). Several types of enteroendocrine cell throughout the gut express components of nutrient-sensing and signal-transduction systems
that were previously thought to be selective to taste-bud cells. These include apical G protein–coupled receptors for sweet and bitter chemicals;
the unusual G protein isoforms Gα
gustducin
, Gβ3, and Gγ13; phospholipase Cβ2; and the TRPM5 Ca2
+
-activated Na
+
/K
+
channel. Additional con-
tributions from plasma membrane delayed-rectifying K
+
channels and voltage-gated Ca
2+
channels that are important for taste sensation in the
tongue have not yet been confirmed in enteroendocrine cells. In both cell types, the final common pathway for activation includes an increase in
intracellular calcium concentration. This triggers basolateral exocytosis of neurotransmitters from lingual taste-receptor cells into synapses with
nerve fibers that relay information to the hindbrain. In enteroendocrine cells, surges in intracellular calcium concentration trigger release from
the basolateral membrane of signaling molecules, including satiation peptides, which diffuse across extracellular fluids to enter the circulation or
to interact with nearby afferent nerve terminals from vagal, spinal, and myenteric neurons. IP3, inositol trisphosphate.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  19
peripheral orcentral administration(95, 96). In contrastto the 
peripheral neural mechanisms engaged by many gutpeptides, 
amylin is a hormone that functions primarily on the AP (97). The 
synthetic amylin analogue pramlintide is marketed for diabetes 
treatment but also causes mild progressive weight loss for at least 
26 weeks in humans (98).
Ghrelin: a unique orexigenic hormone
Ghrelin, an acylated peptide produced primarily by the stomach 
and proximal small intestine, functions and is regulated opposite
-
ly tosatiationpeptides (99). It powerfully increases food intake 
in diverse species (100), including humans (101), the only known 
hormone to do so. Contrary to satiation peptides, ghrelin increases 
GI motility and decreases insulin secretion. Also in contrast to sati
-
ation peptides, circulating levels surge shortlybefore meals and are 
suppressed by ingested nutrients (with carbohydrates being more 
effective than proteins, which are more effective than lipids). Post
-
prandial suppression does not require luminal nutrient exposure 
in either the stomachor the duodenum, where 80%–90% of ghrelin 
production occurs, but results instead from neurally transmitted 
(nonvagal) intestinal signals, augmented by insulin (99).
Ghrelin is implicated in mealtime hunger and meal initiation 
because ofits marked pre-meal surges (102). Moreover,ghrelin 
enhances food intakebyincreasing thenumber of meals initi
-
ated, without altering theirsize, anditelicitsnumerousappe
-
titive feeding behaviors. Preprandial ghrelin secretion seems to 
bea cephalic response, possiblystimulated by the sympathetic 
nervous system (103). Pre-meal ghrelin surges can be entrained 
to regularly scheduled meals, and they might participate in the 
anticipatory processes that enable animals to prepare for food 
intake and nutrient disposition (104).
Beyond its proposed role in short-term feeding control, ghrelin 
also fulfills established criteria for a hormone contributing to long-
term body-weight regulation (99). First, circulating levels respond 
in a compensatory manner to bidirectional body-weight changes 
achieved by diverse means,increasingwith weightlossand vice versa. 
Second, ghrelin influences neuronal activity through its receptor in 
several areas of the brain governing long-term energy homeosta
-
sis, including the hypothalamus (specifically arcuate NPY/AGRP 
neurons), caudal brainstem, and mesolimbic reward centers. The 
ghrelin receptor is also expressed by vagal-afferentnerves, which are 
inhibited by ghrelin (opposite to satiation factors) (105), although 
the importance of this for ghrelin-stimulated feeding is controver
-
sial. Third, chronic ghrelin administration increases body weight 
through numerous anabolic effects on food intake, energy expendi
-
ture, and fuelutilization. Finally, pharmacologic ghrelin blockade 
in adult animals decreases food intake andbody weight, and mice 
lacking ghrelin signaling resist diet-induced obesity (106, 107).
Because the obesity-resistant phenotypes of congenital ghrelin-
deficient and ghrelin receptor–deficient mice are subtle, the rela
-
tive importance of ghrelin in energy homeostasis remains unclear, 
anditsefficacy as an antiobesity drug target is as yetunproven 
in humans. Regardless ofhow physiologically vital ghrelin is in 
energy homeostasis, however, it offers exciting potential for phar
-
macologic treatment of cachexia and GI motility disorders.
Mechanisms governing nutrient-stimulated peptide
secretion from enteroendocrine cells
The mechanisms by which food triggers release of GI satiation fac
-
tors are more diverse than originally described and deserve special 
attention. Various properties of food stimulate enteroendocrine 
cells to secrete peptides that diffuse across the subepithelial lam
-
ina propria to activate vagal-, enteric-, and spinal-afferent nerves 
and/or to enter the circulation (Figure 2). One mechanism mediat
-
ing enteroendocrine cell activation, which regulates GLP1 release, 
involves cellular uptake and intracellular metabolism of glucose. 
ThistriggerspeptideexocytosisviaATP-sensitivepotassium-
channel closure, depolarization, and calcium-channel activation 
— analogous to insulin secretion (108).
However, intestinal satiation and enteroendocrine cell activation 
canoccur withoutnutrient uptake or intracellular metabolism 
(14, 109), by mechanisms resembling oral taste sensation (Figure 
3). Both taste-receptor cells on the tongue and enteroendocrine 
cells in the gut are polarized, with apical microvilli bearing recep
-
tors that detect chemical properties of food. In response to nutri
-
ents, signaling molecules are secreted from the basolateral sides of 
both cell types, activating adjacent nerve terminals. Several entero
-
endocrinecell typesthroughout the gut express T1R2/3sweet 
taste receptors, T2R-family bitter receptors, and/or the taste-spe
-
cific G protein G
α
gustducin
, and these cells are activated by tastant 
molecules (110–114). For example, intestinal L cells, which secrete 
GLP1, oxyntomodulin, andPYY, express specialized isoforms of 
molecules constituting a pathway for nutrient sensing and signal 
transduction previously believed to be limited to taste-bud cells. 
These components include sweet and bittertaste receptors; the 
G protein subunits 
α
gustducin
, β
3
, and γ
13
; phospholipase Cβ2 (which 
increases intracellular Ca
2+
); and the TRPM5 Ca
2+
-activated Na
+
/
K
+
 channel (which depolarizes cells) (114). Importantly, taste-like 
nutrientsensing is necessary for normal GLP1 secretion. The GLP1 
response to both glucose and lipid gavage is absent in G
α
gustducin
-
deficient mice, which consequently manifest impaired incretin-
mediatedinsulin secretion (115). In additionto stimulating peptide 
release directly, sweet-taste-receptor activation byextracellular 
tastants also upregulatesglucosetransporters in enteroendocrine 
cells, possibly amplifying release of satiationpeptides by enhancing 
intracellular glucose uptake and metabolism (110).
Because the details of sweet-taste-receptor activation are under
-
stood at the atomic level, one can imagine rational design of non
-
caloricartificial sweetenersoptimizedfor thecombinationof 
palatable taste and potent L cell activation. These might supple
-
ment treatment of obesity and diabetes. Indeed, the nonabsorb
-
able sweetener sucralose stimulates GLP1 release by taste recep
-
tor–dependent mechanisms (115).
CCK-producing STC-1 cells also express sweet and bitter taste 
receptors, along with G
α
gustducin
(110), and they respond to bitter 
tastants with intracellular Ca
2+
 spikes and CCK release (113). This 
fits with the strong CCK-stimulating ability of proteins, insofar as 
bitterness in food derives disproportionately from proteins. Pro
-
teins also activate enteroendocrine cells through the extracellular 
Ca
2+
-sensing G protein–coupled receptor (18), whichrecognizes the 
aromatic amino acids tryptophan andphenylalanine— residues that 
elicit intestinal satiation more effectively than other amino acids 
(116). An interesting, unanswered question is whether the umami 
receptor, which mediates protein taste sensation inthe tongue, 
contributes to enteroendocrine-cell protein detection. Similarly, we 
wonder whether the ion channel salty and sour taste-bud receptors, 
which are directly gated by Na
+
 and H
+
, respectively, might contrib-
ute to gut sensing of ionic and acidic properties of food.
Lipids effectively stimulate many satiation peptides, including 
CCK,GLP1, oxyntomodulin,PYY, enterostatin,andAPO AIV. 
review series
20 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 1    January 2007
Fattyacids (FAs)mustcontain atleast 12carbons to activate 
I cells and stimulate CCK release (117); similarly, only long-chain 
FAs elicit intestinal satiation (116). Enteroendocrine cells sense 
FAs in part through the recently deorphanized receptor GPR120. 
This cell-surface FA receptor is abundantly expressed on intesti
-
nal L cells, and it contributes to FA-induced GLP1 secretion (118). 
Further research is needed to determine whether the FA receptors 
GPR40–GPR43arealsoinvolved,and whether enteroendocrine 
cellsdetect lipids, as the tonguedoes, via the newly identified puta
-
tive fat-taste receptor cofactor CD36 (119).
Interactions among long-term adiposity signals
and short-term satiation signals
Long-acting adiposity hormones that regulate body weight, such 
as leptin and insulin, must ultimately influence eating behavior at 
individual meals. Accordingly, leptin and insulin acting in thebrain, 
especially the hypothalamus, enhance central sensitivity to input 
from short-acting peripheral satiation signals, such as CCK (10, 
11). Emerging evidence suggests that analogous synergismbetween 
long- and short-actingsignals occurs in the gut (Figure 4).For exam
-
ple, leptin and insulin receptors are expressed on L cells, and activa
-
tion of these receptors augments GLP1 secretion (120). Conversely, 
and similarly to what occurs in the hypothalamus,
L cells display 
diet-induced leptin and insulin resistance, with diminished GLP1 
release. These findings suggest that long- and short-acting anorectic 
signals cooperate at the level of gut-peptide secretion.
Similar interactions occur at the level of vagal sensitivity to gut 
peptides. A functional signaling isoform of the leptin receptor is 
coexpressed with CCK1R by vagal-afferent nerve terminals in the 
stomach andduodenum (121).CCKactivation of cultured vagal sen
-
sory neuronsfrom these regions is enhanced by leptin (122), and the 
two peptides function synergistically to increase discharge of vagal-
afferent fibers (123), just as they potentiate the anorectic actions 
of each other (10, 11).Some authors speculate thatthese findings 
establish a neuroanatomical substrate for complementary interac
-
tions between gastric leptin and intestinal CCK in short-term satia
-
tion.It isprobablytrue that the gastric leptin secretedfrom chief cells 
into the stomach lumen during meals travels to the duodenum and 
stimulates CCK release (124). It is not clear, however,whether gas
-
tric leptinsecreted from P cells into thecirculation reaches duodenal 
vagal fibers before passing through the liver and being diluted in the 
general circulation, where leptin levels fluctuate only very minimally 
with meals. Therefore, the enhancement of CCK-induced duodenal 
vagal-afferent signaling by leptin might reflect a long-acting adipos
-
ity hormone (adipocyte leptin) increasing peripheral neural sensitiv
-
ity to a short-acting GI satiation factor.
Just as the hypothalamus and hindbrain integrate input from 
catabolic and anabolic peripheral signals reflecting energy status, 
the vagus nerve seems to perform an analogous assimilative role 
in the gut. GI vagal-afferentfibers display extensive colocaliza
-
tion of receptors for gut peptides that are anorexigenic, such as 
CCKand leptin, as well as orexigenic, such as ghrelin, melanin-
concentrating hormone (MCH), and orexins (125). At least some 
of these receptors are regulated adaptively by alterations in nutri
-
tional state, and they interact with one another in a coordinated, 
logical manner. For example, receptors for ghrelin and CCK are 
coexpressed on vagal-afferent neurons(125), and these two ligands 
exert antagonistic effects on vagal-afferent discharges (105). Simi
-
larly, catabolic gut peptides tend to suppress secretion of anabolic 
gut peptides and vice versa, whereas ghrelin increases expression of 
orexigenic cannabinoid-1 and MCH-1receptors on vagal afferents 
(125). These observations suggest that GI peptides act in a coordi
-
nated manner,belying theirdiffuse anatomical distribution. More
-
over, alterations in nutritional state influence gut-brain satiation 
signaling by recalibrating vagal sensitivity to GI signals.
Hopes for the future
The elegantly interconnected mechanisms by which the GI system 
regulates food intake are a marvel of biology, but the redundancy 
of both GI and CNS pathwaysgoverning energy homeostasis poses 
formidable challenges for scientists designingantiobesity phar
-
maceuticals. Fortunately, our increasingly sophisticated under
-
standing of these regulatory networks should facilitate the ratio
-
nal manipulation of their components to treat obesity, although 
itmaybenecessary to influence morethan oneelement ofthe 
system jointly to achieve major weight reduction. Mounting evi
-
Figure 4
Central and peripheral sites at which the long-acting adiposity hor-
mone leptin potentiates the actions of short-acting GI satiation factors.
Leptin-receptor signaling within the hypothalamus indirectly augments
hindbrain neuronal responses to gut satiation signals, such as CCK,
through hypothalamus-hindbrain projections involving oxytocin and
other neuropeptides (10, 11). Central responses to CCK are also aug-
mented by leptin acting directly on the hindbrain. In the periphery, leptin
potentiates GI satiation signals both by enhancing gut-peptide secretion
(for example, GLP1 release from distal-intestinal L cells) and by height-
ening vagal-afferent responsiveness to gut peptides (for example, to
CCK from proximal-intestinal I cells). LepR, leptin receptor.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  21
dence indicates that the ability of certain bariatric operations to 
promote profound weight loss and completely resolve type 2 dia
-
betes results, in part, from their salutary modulationof several 
gutpeptides. These changes include stimulation of GLP1, PYY, 
and oxyntomodulin, constraint of ghrelin secretion, and probably 
other salient endocrine alterations. Continuedresearch should 
increasingly enable us to exploit these natural appetite-regulatory 
systems pharmacologically to achieve at least some of the impres
-
sive effects of bariatric surgery with medications.
Acknowledgments
This work was supported by NIH grants RO1 DK61516 and PO1 
DK68384 (to D.E. Cummings).
Address correspondence to:DavidE. Cummings,University of 
Washington,VA Puget Sound Health Care System, 1660 South 
Columbian Way,S-111-Endo, Seattle, Washington 98108, USA. 
Phone: (206) 764-2335; Fax: (206) 764-2689;E-mail: davidec@
u.washington.edu.
1. Blundell, J.E., and Halford, J.C. 1994. Regulation 
of nutrient supply: the brain and appetite control. 
Proc. Nutr. Soc.53:407–418.
2. Smith, G.P. 1998. Satiation: from gut to brain. Oxford 
University Press. New York, New York, USA. 291 pp.
3. Strubbe, J.H., and Woods, S.C. 2004. The timing of 
meals. 
Psychol. Rev.111:128–141.
4. Gibbs, J., Young, R.C.,and Smith, G.P.1973. Choly
-
cystokinin elicits satiety in rats with open gastric 
fistulas. Nature.245:323–325.
5. Strader, A.D., and Woods, S.C. 2005. Gastrointes-
tinal hormones and food intake. 
Gastroenterology.
128:175–191.
6. Janowitz, H.D., and Grossman, M.I. 1949. Effect of 
variations in nutritive density on intake of food of 
dogs and rats. Am. J. Physiol.158:184–193.
7. Woods, S.C. 1991. The eating paradox: how we tol
-
erate food. Psychol. Rev.98:488–505.
8. Grill, H.J., and Norgren, R. 1978. Chronically decer-
ebrate rats demonstrate satiation but not bait shy-
ness. 
Science.201:267–269.
9. Grill, H.J., and Smith, G.P. 1988. Cholecystokinin 
decreases sucrose  intake  in chronic decerebrate 
rats. Am. J. Physiol.254:R853–R856.
10. Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, 
R.J., and Baskin, D.G. 2000. Central nervous sys
-
tem control of food intake. Nature.404:661–671.
11. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, 
G.S., and Schwartz, M.W. 2006. Centralnervous 
systemcontrol of foodintakeand bodyweight. 
Nature. 443:289–295.
12. Prechtl, J.C., and Powley, T.L. 1990. The fiber com-
position of the abdominal vagus of the rat. Anat.
Embryol. (Berl.)181:101–115.
13. Davis,  J.D.,andSmith,G.P.1990.  Learningto 
sham feed: behavioral adjustments to loss of phys
-
iologicalpostingestionalstimuli.Am. J. Physiol.
259:R1228–R1235.
14. Ritter, R.C. 2004. Gastrointestinal mechanisms of 
satiation for food. 
Physiol. Behav.81:249–273.
15. Kaplan, J.M., Spector, A.C.,andGrill,H.J. 1992. 
Dynamicsof gastric emptying during and  after 
stomach fill. Am. J. Physiol.263:R813–R819.
16. Powley, T.L., and Phillips, R.J. 2004. Gastric satia
-
tion is volumetric, intestinal satiation is nutritive. 
Physiol. Behav.82:69–74.
17. Phillips, R.J., and Powley, T.L. 1996. Gastric volume 
rather than nutrient content inhibits food intake. 
Am. J. Physiol.271:R766–R769.
18. Conigrave, A.D.,  Quinn,  S.J.,andBrown, E.M. 
2000.L-amino acidsensingbythe extracellular 
Ca2+-sensing receptor. Proc. Natl. Acad. Sci. U. S. A.
97:4814–4819.
19. Berthoud, H.R., and Powley, T.L. 1992. Vagal affer-
entinnervation of theratfundic stomach:mor-
phological characterization of the gastric tension 
receptor. 
J. Comp. Neurol.319:261–276.
20. Phillips, R.J., and Powley, T.L. 2000. Tension and 
stretch receptors in gastrointestinal smooth mus-
cle: re-evaluating vagal mechanoreceptor electro-
physiology. Brain Res. Brain Res. Rev.34:1–26.
21. Schwartz,  G.J.,  Salorio,C.F.,Skoglund,C.,  and 
Moran, T.H. 1999. Gut vagal afferent  lesions 
increase meal size but donotblock gastricpre
-
load-induced feedingsuppression.Am. J. Physiol.
276:R1623–R1629.
22. Gibbs, J., Maddison, S.P., and Rolls, E.T. 1981. Sati
-
ety role of the small intestine examined in sham-
feedingrhesus monkeys. J. Comp. Physiol. Psychol.
95:1003–1015.
23. Rehfeld, J.F. 2004. A centenary of gastrointestinal 
endocrinology. Horm. Metab. Res.36:735–741.
24. Reeve, J.R., Jr., Green, G.M., Chew,P., Eysselein, V.E., 
and Keire, D.A. 2003.CCK-58 is the only detectable 
endocrine form ofcholecystokinin in rat. 
Am. J.
Physiol. Gastrointest. Liver Physiol.285:G255–G265.
25. Antin, J., Gibbs, J., Holt, J., Young, R.C., and Smith, 
G.P. 1975.Cholecystokinin elicitsthe complete 
behavioralsequenceof  satiety  inrats.
J. Comp.
Physiol. Psychol.89:784–790.
26. Kissileff, H.R., Pi-Sunyer, F.X., Thornton, J., and 
Smith, G.P. 1981. C-terminal octapeptide of cho
-
lecystokinin decreases food intake in man. Am. J.
Clin. Nutr.34:154–160.
27. Moran, T.H., Katz, L.F., Plata-Salaman, C.R., and 
Schwartz, G.J. 1998. Disordered food intake and 
obesity in rats lacking cholecystokinin A receptors. 
Am. J. Physiol.274:R618–R625.
28. Kopin,  A.S.,  et al.  1999.The  cholecystokinin-A 
receptor mediates inhibition of food intake yet is 
not essential for the maintenance of body weight. 
J. Clin. Invest.103:383–391.
29. Moran, T.H., and Kinzig, K.P. 2004. Gastrointes-
tinal satiety signals.  II.  Cholecystokinin. Am. J.
Physiol. Gastrointest. Liver Physiol.286:G183–G188.
30. Zittel, T.T., et al. 1999. C-fos proteinexpression 
in the nucleus of the solitary tract correlates with 
cholecystokinin dose injected and food intake in 
rats. 
Brain Res.846:1–11.
31. Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R., and 
Simansky, K.J. 1981. Abdominal vagotomy blocks 
the satiety effect of cholecystokinin in the rat. 
Sci-
ence.213:1036–1037.
32. Moran, T.H., Baldessarini,A.R., Salorio, C.F., Lowery, 
T., and Schwartz, G.J. 1997. Vagal afferent and effer
-
ent contributions to the inhibition of foodintake by 
cholecystokinin. Am. J. Physiol.272:R1245–R1251.
33. Joyner, K., Smith, G.P., andGibbs, J. 1993. Abdom-
inal vagotomy decreases the satiating potency of 
CCK-8 insham and  real feeding.
Am. J. Physiol.
264:R912–R916.
34. Edwards, G.L., Ladenheim, E.E., and Ritter, R.C. 
1986.  Dorsomedialhindbrainparticipation  in 
cholecystokinin-induced  satiety.
Am. J. Physiol.
251:R971–R977.
35. Blevins, J.E., Stanley, B.G., and Reidelberger, R.D. 
2000. Brainregions wherecholecystokininsup-
presses feeding in rats. 
Brain Res.860:1–10.
36. Schwartz,G.J., McHugh,P.R., and Moran, T.H. 
1993. Gastric loads and cholecystokinin synergis-
tically stimulate rat gastric vagal afferents. Am. J.
Physiol.265:R872–R876.
37. Moran, T.H., and McHugh, P.R. 1982. Cholecysto-
kinin suppresses food intake by inhibiting gastric 
emptying. Am. J. Physiol.242:R491–R497.
38. Kissileff,H.R.,Carretta, J.C.,  Geliebter,A.,and 
Pi-Sunyer, F.X. 2003. Cholecystokinin and stom
-
ach distension combine to reduce food intake in 
humans. Am. J. Physiol. Regul. Integr. Comp. Physiol.
285:R992–R998.
39. Cox, J.E. 1996. Effect of pyloric cuffs on cholecysto
-
kinin satiety. 
Physiol. Behav.60:1023–1026.
40. Moran, T.H., and Bi, S. 2006. Hyperphagia and obe-
sity in OLETF rats lacking CCK-1 receptors. Philos.
Trans. R. Soc. Lond. B Biol. Sci.361:1211–1218.
41. Moran, T.H., Ameglio, P.J., Peyton, H.J., Schwartz, 
G.J., and McHugh, P.R. 1993. Blockade of type A, 
but not type B, CCK receptors postpones satiety in 
rhesus monkeys. 
Am. J. Physiol.265:R620–R624.
42. Reidelberger, R.D., and O‘Rourke, M.F. 1989. Potent 
cholecystokinin  antagonist  L  364718  stimulates 
food intake in rats. 
Am. J. Physiol.257:R1512–R1518.
43. Beglinger, C., Degen, L., Matzinger, D., D’Amato, 
M.,  andDrewe,J.2001.  Loxiglumide,  a  CCK-A 
receptor antagonist, stimulates calorie intake and 
hungerfeelingsin humans.Am. J. Physiol. Regul.
Integr. Comp. Physiol.280:R1149–R1154.
44. West, D.B., Fey, D., and Woods, S.C. 1984. Chole-
cystokininpersistently suppresses meal size but 
not food intake in free-feeding rats. Am. J. Physiol.
246:R776–R787.
45. Muurahainen, N.,Kissileff, H.R., Derogatis,A.J., 
and Pi-Sunyer, F.X. 1988. Effects of cholecystoki-
nin-octapeptide (CCK-8) on food intake and gas-
tric emptying in man. Physiol. Behav.44:645–649.
46. Crawley, J.N., and Beinfeld, M.C. 1983. Rapid devel
-
opment of tolerance to the behavioural actions of 
cholecystokinin. Nature.302:703–706.
47. Pironi, L., etal. 1993. Fat-induced ilealbrake in 
humans: a dose-dependent phenomenon correlat-
ed to the plasma levels of peptide YY. 
Gastroenterol-
ogy.105:733–739.
48. Drucker, D.J. 2006. The biology of incretin hor-
mones. Cell Metab.3:153–165.
49. Brubaker, P.L., and Anini, Y. 2003. Direct and indi
-
rect mechanisms regulating secretion of glucagon-
like peptide-1 and glucagon-like peptide-2. Can. J.
Physiol. Pharmacol.81:1005–1012.
50. Orskov, C., Wettergren, A., and Holst, J.J. 1993. Bio
-
logical effects and metabolic rates of glucagonlike 
peptide-1 7-36 amide and glucagonlike peptide-1 
7-37 in healthy subjects are indistinguishable. Dia-
betes.42:658–661.
51. Turton, M.D., et al. 1996. A role for glucagon-like 
peptide-1  in the  central  regulation  of feeding. 
Nature.379:69–72.
52. Donahey, J.C., van Dijk, G., Woods, S.C., and See-
ley, R.J. 1998. Intraventricular GLP-1 reduces short- 
but not long-term food intake or body weight in 
lean and obese rats. 
Brain Res.779:75–83.
53. Verdich, C., et al.2001. A meta-analysis of the effect 
of glucagon-like peptide-1 (7-36) amide on ad libi-
tumenergy intakein humans. 
J. Clin. Endocrinol.
Metab.86:4382–4389.
54. Gutzwiller, J.P., et al. 1999. Glucagon-like peptide-1: 
a potent regulator of food intake in humans. Gut.
44:81–86.
55. Naslund, E., et al. 1999. Energy intake and appe-
tite are  suppressed  by glucagon-like  peptide-1 
(GLP-1) in obese men. Int. J. Obes. Relat. Metab. Dis-
ord.23:304–311.
56. Toft-Nielsen,M.B.,  Madsbad,S.,andHolst,J.J. 
1999. Continuous subcutaneous infusion of glu
-
cagon-likepeptide 1 lowers plasma glucoseand 
reduces appetite in type 2 diabetic patients. Diabetes
review series
22 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 1    January 2007
Care.22:1137–1143.
57. Zander, M., Madsbad, S., Madsen, J.L., and Holst, 
J.J. 2002. Effect of 6-week course of glucagon-like 
peptide 1 on glycaemic control, insulin sensitivity, 
and beta-cell function in type 2 diabetes: a parallel-
group study. 
Lancet.359:824–830.
58. Henry, R., et al. 2006. Exenatidemaintained glyce-
mic control with associated weight reductionover 
2 years in patients with type 2 diabetes [abstract]. 
In
66th Scientific Sessions of the American Diabetes
Association.June9–13,  2006. Washington,DC, 
USA. 485-P.
59. Baggio, L.L., Huang, Q., Brown, T.J., and Drucker, 
D.J. 2004. Oxyntomodulin and glucagon-like 
peptide-1 differentially regulate  murine  food 
intake and energy  expenditure. 
Gastroenterology.
127:546–558.
60. Abbott, C.R., et al. 2005. The inhibitory effects of 
peripheral administration of peptide YY(3-36) and 
glucagon-like peptide-1 on food intake are attenu
-
ated by ablation of the vagal-brainstem-hypotha-
lamic pathway. 
Brain Res.1044:127–131.
61. Talsania, T., Anini,Y., Siu, S.,Drucker,D.J., and 
Brubaker,  P.L. 2005.  Peripheral  exendin-4 and 
peptide YY(3-36) synergistically reduce food intake 
through different mechanisms in mice. Endocrinol-
ogy.146:3748–3756.
62. Kinzig, K.P., D’Alessio, D.A., and Seeley, R.J. 2002. 
The diverse roles of specific GLP-1 receptors in the 
control of food intake and the response to visceral 
illness. 
J. Neurosci.22:10470–10476.
63. Scrocchi, L.A., et al. 1996. Glucose intolerance but 
normal satiety in mice with a null mutation in the 
glucagon-likepeptide 1 receptor gene. Nat. Med.
2:1254–1258.
64. Dakin, C.L., et al. 2001. Oxyntomodulin inhibits 
food intake in the rat.
Endocrinology.142:4244–4250.
65. Dakin, C.L., et al. 2004. Peripheral oxyntomodulin 
reduces food intake and body weight gain in rats. 
Endocrinology.145:2687–2695.
66. Cohen, M.A., et al. 2003. Oxyntomodulin suppress
-
esappetite and reduces foodintake in humans. 
J. Clin. Endocrinol. Metab.88:4696–4701.
67. Wynne, K., et al. 2005. Subcutaneous oxyntomodu-
lin reduces body weight in overweight and obese 
subjects: a double-blind, randomized, controlled 
trial. 
Diabetes.54:2390–2395.
68. Wynne, K., et al. 2006. Oxyntomodulin increases 
energy expenditure in addition  to decreasing 
energyintake inoverweight and obese humans: 
a randomised controlled trial. 
Int. J. Obes. (Lond.).
30:1729–1736.
69. Yamamoto, H., et al. 2002. Glucagon-like peptide-1 
receptor stimulation increases blood pressure and 
heart rate  and activates autonomic  regulatory 
neurons. 
J. Clin. Invest. 110:43–52.  doi:10.1172/
JCI200215595.
70. Degen,  L., et al. 2005. Effect  of peptide YY3-
36on food intake  inhumans.
Gastroenterology.
129:1430–1436.
71. Lin, H.C., and Taylor, I.L. 2004. Release of peptide 
YY by fat in the proximal but not distal gut depends 
on an atropine-sensitive cholinergic pathway. Regul.
Pept.117:73–76.
72. Batterham, R.L., et al. 2002. Gut hormone PYY(3-
36) physiologically inhibits food intake. Nature.
418:650–654.
73. Batterham, R.L. 2003. Inhibition of food intake in 
obese subjects by peptide YY3-36. 
N. Engl. J. Med.
349:941–948.
74. Hagan, M.M. 2002. Peptide YY: a key mediator of 
orexigenic behavior. Peptides.23:377–382.
75. Kanatani,A.,et al.2000.Roleof theY1 receptor 
in the regulation of neuropeptide Y-mediated feed
-
ing: comparison of wild-type, Y1 receptor-deficient, 
and Y5 receptor-deficient  mice. Endocrinology.
141:1011–1016.
76. Scott, V.,Kimura,N., Stark,J.A., andLuckman, 
S.M.2005.IntravenouspeptideYY3-36  andY2 
receptor antagonism in the rat: effects on feeding 
behaviour. 
J. Neuroendocrinol.17:452–457.
77. Koda, S., et al. 2005. The role of the vagal nerve in 
peripheral PYY3-36-induced feeding reduction in 
rats. 
Endocrinology.146:2369–2375.
78. Tschop, M., et al. 2004. Physiology: does gut hor-
mone PYY3–36 decrease food intakein rodents? 
Nature.430:1 p following 165; discussion 2 p fol-
lowing 165.
79. Halatchev, I.G., Ellacott, K.L., Fan, W., and Cone, 
R.D. 2004. Peptide YY3-36 inhibits food intake in 
mice through a melanocortin-4 receptor-indepen
-
dent mechanism. 
Endocrinology.145:2585–2590.
80. Adams,S.H., Won, W.B., Schonhoff, S.E.,Leiter, 
A.B., and Paterniti, J.R., Jr. 2004. Effects of peptide 
YY[3-36] on short-term food intake in mice are not 
affected by prevailing plasma ghrelin levels. 
Endo-
crinology.145:4967–4975.
81. Challis, B.G., et al. 2004. Mice lacking POMC are 
sensitive to high-fat feeding but respond normally 
to the acute anorectic effects of peptide-YY(3-36). 
Proc. Natl. Acad. Sci. U. S. A.101:4695–4700.
82. Pittner, R.A., etal. 2004. Effects of PYY[3-36]in 
rodent models of diabetes and obesity. Int. J. Obes.
Relat. Metab. Disord.28:963–971.
83. Chelikani,P.K., Haver, A.C., Reeve,J.R., Jr., Keire, 
D.A.,  and  Reidelberger,  R.D.  2006.Daily,inter
-
mittent intravenous infusion of peptide YY(3-36) 
reduces dailyfood intake and adiposity in rats. Am. J.
Physiol. Regul. Integr. Comp. Physiol.290:R298–R305.
84. Moran, T.H., et al. 2005. Peptide YY(3-36) inhibits 
gastric emptying and produces acute reductions in 
food intake in rhesus monkeys. Am. J. Physiol. Regul.
Integr. Comp. Physiol.288:R384–R388.
85. York,D.A., Lin, L.,Thomas, S.R., Braymer, H.D., 
and Park, M. 2006. Procolipase gene expression in 
the rat brain: source of endogenous enterostatin 
production in the brain. 
Brain Res.1087:52–59.
86. Okada, S., York, D.A., Bray, G.A., Mei, J., and Erlan-
son-Albertsson, C. 1992. Differential inhibition of 
fat intake in two strains of rat by the peptide enter
-
ostatin. Am. J. Physiol.262:R1111–R1116.
87. Park,  M.,  etal.  2004.  The  F1-ATPasebeta-sub-
unit is the putative enterostatin receptor. 
Peptides.
25:2127–2133.
88. Lin,L.,andYork,D.A. 2005. 5-HT1Breceptors 
modulatethe feedinginhibitory effects of enter-
ostatin. Brain Res.1062:26–31.
89. Kovacs, E.M., Lejeune, M.P., and Westerterp-Plant
-
enga, M.S. 2003. The effects of enterostatin intake 
on food intake and energy expenditure. Br. J. Nutr.
90:207–214.
90. Qin, X., and Tso, P. 2005. The role of apolipoprotein 
AIV in the control of food intake. 
Curr. Drug Targets.
6:145–151.
91. Fujimoto, K., Fukagawa, K., Sakata, T., and Tso, P. 
1993.Suppression of food intake by apolipoprotein 
A-IV is mediated through the central nervous sys
-
tem in rats. J. Clin. Invest.91:1830–1833.
92. Katsuura, G., Asakawa, A., and Inui, A. 2002. Roles 
ofpancreaticpolypeptide inregulation offood 
intake. Peptides.23:323–329.
93. Asakawa, A.,et al.2003. Characterizationof the 
effects of pancreatic polypeptide in the regulation 
of energy balance. 
Gastroenterology.124:1325–1336.
94. Batterham, R.L., et al. 2003. Pancreatic polypeptide 
reduces appetite and food intake in humans. J. Clin.
Endocrinol. Metab.88:3989–3992.
95. Rushing, P.A., Hagan, M.M., Seeley, R.J., Lutz, T.A., 
andWoods,S.C.2000. Amylin: anovelaction in 
the  braintoreduce  bodyweight.Endocrinology.
141:850–853.
96. Lutz, T.A., Geary, N., Szabady, M.M., Del Prete, E., 
and Scharrer, E. 1995. Amylin decreases meal size 
in rats. Physiol. Behav.58:1197–1202.
97. Lutz, T.A., Althaus, J., Rossi,R.,and Scharrer, E. 
1998. Anorectic effect of amylin is not transmitted 
by capsaicin-sensitive nerve fibers. 
Am. J. Physiol.
274:R1777–R1782.
98. Hollander, P., et al. 2004. Effect of pramlintide on 
weight in overweight and  obese  insulin-treated 
type 2 diabetes patients. 
Obes. Res.12:661–668.
99. Cummings, D.E., Foster-Schubert, K.E., and Over
-
duin, J. 2005. Ghrelin and energy balance: focus on 
current controversies. Curr. Drug Targets.6:153–169.
100. Tschop, M., Smiley, D.L., and Heiman, M.L. 2000. 
Ghrelin  induces adiposity in  rodents.
Nature.
407:908–913.
101. Wren, A.M., et al. 2001. Ghrelin enhances appetite 
and increases food intake in humans. J. Clin. Endo-
crinol. Metab.86:5992–5995.
102. Cummings, D.E., et al. 2002. Plasma ghrelin levels 
after diet-induced weight loss or gastric bypass sur-
gery. 
N. Engl. J. Med.346:1623–1630.
103. Mundinger,  T.O., Cummings, D.E.,  and  Tabor-
sky, G.J., Jr.2006.Direct stimulation of ghrelin 
secretion  by  sympathetic  nerves.
Endocrinology.
147:2893–2901.
104. Drazen,D.L., Vahl, T.P.,  D’Alessio,D.A.,Seeley, 
R.J., and Woods, S.C. 2006. Effects of a fixed meal 
pattern on ghrelin secretion: evidence for a learned 
response independent of nutrient status.
Endocri-
nology.147:23–30.
105. Date, Y., et al. 2002. The role of the gastric affer
-
ent  vagal  nerve  in  ghrelin-inducedfeedingand 
growth hormone secretion in rats. Gastroenterology.
123:1120–1128.
106. Wortley, K.E., et al. 2005. Absence of ghrelin pro
-
tects against  early-onset obesity. J. Clin. Invest.
115:3573–3578. doi:10.1172/JCI26003.
107. Zigman,J.M.,  etal.  2005.  Micelacking  ghrelin 
receptors resist thedevelopment of diet-induced 
obesity. 
J. Clin. Invest.115:3564–3572. doi:10.1172/
JCI26002.
108. Reimann, F., and Gribble, F.M. 2002. Glucose-sens-
ing in glucagon-like peptide-1-secreting cells. Dia-
betes.51:2757–2763.
109. Gribble, F.M., Williams, L., Simpson, A.K., and Rei
-
mann, F. 2003. A novel glucose-sensing mechanism 
contributing to glucagon-like peptide-1 secretion 
from the GLUTag cell line. Diabetes.52:1147–1154.
110. Dyer, J., Salmon, K.S., Zibrik, L.,and Shirazi-Beechey, 
S.P. 2005. Expression of sweet taste receptors of the 
T1R family in the intestinal tract and enteroendo
-
crine cells. Biochem. Soc. Trans.33:302–305.
111. Wu,  S.V.,etal.  2002.Expression of  bittertaste 
receptors of the T2R family in the gastrointestinal 
tract and enteroendocrine STC-1 cells. 
Proc. Natl.
Acad. Sci. U. S. A.99:2392–2397.
112. Hofer, D., Puschel, B., and Drenckhahn, D. 1996. 
Taste receptor-like cells in the rat gut identified by 
expression of alpha-gustducin. 
Proc. Natl. Acad. Sci.
U. S. A.93:6631–6634.
113. Chen, M.C.,Wu, V.,  Reeve,  J.R., and Rozengurt, 
E. 2006. Bitter stimuli induce Ca2+ signaling and 
CCK release in enteroendocrine STC-1 cells: role 
of L-typevoltage-sensitiveCa2+ channels. 
Am. J.
Physiol. Cell Physiol. 291:C726–C739.
114. Rozengurt, N., etal.2006. Colocalization ofthe 
alpha-subunit of gustducin with PYY and GLP-1 
in L cells of human colon. 
Am. J. Physiol. Gastrointest.
Liver Physiol. 291:G792–G802.
115. Margolskee, R.F. 2006. Molecular biology of taste 
perception. Diabetes.55(Suppl. 1):35.
116. Meyer, J.H., Hlinka, M., Tabrizi, Y., DiMaso, N., and 
Raybould, H.E.1998. Chemicalspecificities and 
intestinal distributions of nutrient-driven satiety. 
Am. J. Physiol.275:R1293–R1307.
117. McLaughlin, J., et al. 1999. Fatty acid chain length 
determines cholecystokinin secretion and effect on 
human gastric motility. 
Gastroenterology.116:46–53.
118. Hirasawa, A., et al. 2005. Free fatty acids regulate 
gut incretin glucagon-like  peptide-1  secretion 
through GPR120. Nat. Med.11:90–94.
119. Laugerette, F., et al.2005. CD36 involvement in 
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117    Number 1  January 2007  23
orosensory detection of dietary lipids, spontane-
ous fat preference, and digestive secretions. J. Clin.
Invest.115:3177–3184. doi:10.1172/JCI25299.
120. Anini, Y., and Brubaker, P.L. 2003. Role of leptin in 
the regulation of glucagon-like peptide-1secretion. 
Diabetes.52:252–259.
121. Burdyga,G., et al. 2002. Expression of the leptin 
receptor in rat and human nodose ganglion neu-
rones. 
Neuroscience.109:339–347.
122. Peters, J.H., Karpiel, A.B., Ritter, R.C., and Simasko, 
S.M. 2004. Cooperative activation of cultured vagal 
afferentneurons byleptin and cholecystokinin. 
Endocrinology.145:3652–3657.
123. Wang, Y.H., Tache, Y., Sheibel, A.B., Go, V.L., and 
Wei, J.Y. 1997. Two types of leptin-responsive gas
-
tric vagal afferent terminals: an in vitro single-unit 
study in rats. Am. J. Physiol.273:R833–R837.
124. Guilmeau, S., Buyse, M., Tsocas, A., Laigneau, J.P., 
and Bado,A. 2003.Duodenalleptin stimulates 
cholecystokinin secretion: evidence of apositive 
leptin-cholecystokinin feedback  loop.
Diabetes.
52:1664–1672.
125. Burdyga,G.,Varro,A., Dimaline, R., Thompson, 
D.G., and Dockray, G.J. 2006. Ghrelin receptors in 
rat and human nodose ganglia: putative role in reg
-
ulating CB-1 and MCH receptor abundance. Am. J.
Physiol. Gastrointest. Liver Physiol.290:G1289–G1297.
... This leads to the storage of excess energy in adipose tissue (AT), which is associated with a host of metabolic disorders, including type 2 diabetes, cardiovascular disease, and certain cancers (Kahn et al., 2006). Notably, 95 % of obesity cases are attributed to exogenous or primary causes, largely related to lifestyle and diet, while only 5 % result from endogenous, genetic, or hormonal factors (Cummings & Overduin, 2007). ...
Article
Full-text available
Obesity is a major global health issue, frequently exacerbated by high-fat diets (HFDs), which contribute to adverse metabolic outcomes. This study investigates the efficacy of extracts from nutritional plants Aframomum citratum (C.Pereira) K.Schum and Xylopia parviflora Spruce in modulating selected anthropometric parameters and fat deposition in DIO-C57BL/6 mice. Over 30 days, we observed that the extracts significantly attenuated body mass index (BMI) and apparent fat mass index (aFMI) in treated mice compared to HFD controls. Notably, X. parviflora at 200 mg.kg − 1 BW (body weight) effectively reduced both visceral and subcutaneous adipose tissues, while orlistat served as a comparative benchmark. Lipid profile assessments revealed significant decreases in triglycerides, total cholesterol, and fatty acid contents in the epididymal fat pads of treated animals. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed these findings and also indicated that treatment with the extracts enhanced the excretion of fatty acids, suggesting a potential mechanism of lipid malabsorption. Furthermore, histological analyses revealed a marked decrease in adipocyte size in treated groups, indicating a considerable decline in fat deposition. These findings suggest that bioactive compounds, particularly phenolic acids and flavonoids, found in A. citratum and X. parviflora extracts exhibit significant anti-obesity properties, positioning them as promising natural therapeutic agents for managing diet-induced obesity. Future research should focus on elucidating the mechanisms responsible for these effects and assessing their clinical applicability. This study contributes valuable insights into the role of dietary interventions in obesity management, with implications for the development of novel therapeutic strategies.
... While gastric acid secretion varies between individuals, it commonly peaks between 10 pm to 2 am, implying that the efficiency of drug absorption during this period may differ from other times (27). In addition, pH fluctuations are also associated with various patientspecific factors, such as dietary habits, digestive activity, and hormone production (28). For example, the pH of the stomach decreases to 1.5-3.5 when gastric acid is actively produced but increases upon fasting or after meals (29). ...
Article
The entry of drugs into cells is crucial to their effectiveness because most drugs exert their therapeutic effects intracellularly. Cells are enclosed by the plasma membrane, which consists of lipids, proteins, and a glycocalyx and serves as a protective barrier limiting drug entry into cells. Changes in the external environment can alter the properties of the membrane, affecting the uptake of extracellular molecules. Among various factors, the pH of the cellular environment substantially influences the properties of the plasma membrane and drug ionization, the process by which a drug gains or loses an electric charge in response to the pH change. Calcium phosphate is commonly used as a filler for drug formulations. To date, a few studies have been done on the effect of pH levels on the efficiency of calcium phosphate for drug delivery. A lower pH increases the Ca2+/PO43- ratio, leading to a higher positive charge. Consequently, we hypothesized that a lower pH could enhance the interaction of calcium phosphate with the negatively charged cell membrane, thus facilitating drug delivery into cells. To test this hypothesis, we used fluorescein as a model molecule for delivery and examined the impact of various pH levels on delivery efficiency. Surprisingly, we found that the efficacy of the delivery increased with higher pH levels. Although the results contradicted our initial hypothesis based on the chemical properties of calcium phosphate, our findings underscore the complexity of intracellular drug delivery, wherein changes in pH levels influence drug transport.
Article
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long‐term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood‐brain barrier) or indirectly (e.g., via vagal input) the “homeostatic” brainstem‐hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425‐1447, 2021.
Article
Full-text available
Childhood obesity is a global health problem, with its prevalence having tripled since 1975. The increase in its prevalence has been predominantly in developing countries, but also in those with high economic status. Nowadays, there are multiple obesity definitions, however, one of the most accurate is the one which defines obesity as the accumulation of excessive body adiposity and not as an body weight excess. Nevertheless, the body mass index (BMI) is the most frequently used tool for its classification, according to the cut-off points established by the Center for Disease Control and World Health Organization tables. In children and adolescents an adiposity excess is related to the appearance of cardiovascular disease in adulthood and with many comorbidities such as metabolic syndrome, insulin resistance, type 2 diabetes, hypertension and metabolic dysfunction-associated steatotic liver disease, among others. Currently, there is still controversy about which is the ideal indicator for measuring overweight and obesity. BMI is still used as a standardized measure but may miss cases in which body composition is pathological despite a BMI within the normal-weight category. An adequate knowledge of the impact on health of dysfunctional adiposity as well as its accurate diagnosis will allow health professionals to address this condition in a more precise and comprehensive manner, and substantially improve the associated cardiometabolic risk and prognosis.
Article
Nutrient sensing is a mechanism for organisms to sense their environment. In larger animals, including humans, the intestinal tract is a major site of nutrient sensing for the body, not surprisingly, as this is the central location where nutrients are absorbed. In the gut, bacterial fermentation results in generation of short chain fatty acids (SCFAs), a class of nutrients, which are sensed by specific membrane bound receptors, FFA2, FFA3, GPR109a, and Olfr78. These receptors are expressed uniquely throughout the gut and signal through distinct mechanisms. To date, the emerging data suggests a role of these receptors in normal and pathological conditions. The overall function of these receptors is to regulate aspects of intestinal motility, hormone secretion, maintenance of the epithelial barrier, and immune cell function. Besides in intestinal health, a prominent role of these receptors has emerged in modulation of inflammatory and immune responses during pathological conditions. Moreover, these receptors are being revealed to interact with the gut microbiota. This review article updates the current body of knowledge on SCFA sensing receptors in the gut and their roles in intestinal health and disease as well as in whole body energy homeostasis. © 2017 American Physiological Society. Compr Physiol 8:1091‐1115, 2018.
Article
The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex. © 2015 American Physiological Society. Compr Physiol 5:217‐253, 2015.
Article
In comparison with a saline infusion, the infusion of the C-terminal octapeptide of cholecystokinin (4 ng/kg/min) decreased food intake by an average of 122 g in a group of 12 lean men without objective evidence of untoward side effects. Shapes of the cumulative intake curves under the two conditions were similar, but subjects ate less and stopped eating sooner when receiving octapeptide than when receiving saline. These results are consistent with the hypothesis that cholecystokinin is an endogenous signal for postprandial satiety. The results offer promise for the possible use of the octapeptide as an appetite suppressant.
Article
Otsuka Long-Evans Tokushima Fatty (OLETF) rats develop obesity, hyperglycemia, and non-insulin-dependent diabetes mellitus and do not express cholecystokinin A (CCK-A) receptors, the receptor subtype mediating the satiety actions of CCK. In short-term feeding tests, male OLETF rats were completely resistant to exogenous CCK, and their response to bombesin was attenuated. Comparisons of liquid meal consumption in OLETF and control Long-Evans Tokushima (LETO) rats demonstrated that 1) OLETF rats had greater intakes during 30-min scheduled daytime meals and significantly larger and fewer spontaneous nighttime meals and 2) although the initial rates of licking were the same, OLETF rats maintained the initial rate longer and the rate at which their licking declined was slower. In 24-h solid food access tests, OLETF rats consumed significantly more pellets than LETO controls, and this increase was attributable to significant increases in meal size. Together, these data are consistent with the interpretation that the lack of CCK-A receptors in OLETF rats results in a satiety deficit leading to increases in meal size, overall hyperphagia, and obesity.
Article
Subdiaphragmatic vagal afferent (SVA) signals arising from gut sites may provide critical feedback for the control of food intake within a meal. To evaluate the role of SVAs in both spontaneous and scheduled meals, food intake was assessed in two paradigms in male Sprague-Dawley rats. In the first study, control(Con) rats (n = 6) and rats with subdiaphragmatic vagal deafferentation (SDA) (n = 7) had 12-h nightly access to Ensure liquid diet (1 kcal/ml). SDA rats had larger and fewer meals and maintained initial rapid rates of licking, yet total numbers of licks were unaffected. In the second study, Con (n = 8) and SDA (n = 7) rats had scheduled access to 12.5% liquid glucose after overnight food deprivation. Glucose intake was assessed after 5-ml gastric preloads of 0.9% saline or glucose, peptone, and Intralipid solutions at three concentrations (0.5, 1, and 2 kcal/ml). Glucose and peptone preloads suppressed intake similarly in Con and SDA rats, whereas Intralipid was ineffective. These results suggest that meal-related SVA signals 1) are not critical in determining preload-induced feeding suppression after deprivation, yet 2) contribute to satiety during spontaneous meals.
Article
Amylin is a 37-amino acid peptide hormone that is co-secreted with insulin by pancreatic B cells in response to a nutrient stimulus (e.g., during meals). To test the hypothesis that amylin acts within the brain to reduce long-term food intake and body weight, we examined the effects of acute and chronic 3rd-ventricular (i3vt) infusion of low doses of amylin on food intake and body weight in rats. In one experiment, separate groups of ad lib-fed male Long Evans rats were given one i3vt infusion (3 μl over 30 s) of synthetic cerebrospinal fluid vehicle or 1 to 100 pmol amylin, and food intake and body weight were monitored for 7 days. Amylin potently and dose-dependently reduced 1-h food intake, with all doses producing significant reductions. The largest dose (100 pmol) significantly reduced 24-h intake by over 30%. The effect was persistent in that both 7-day cumulative food intake and body weight change were significantly decreased over the 7 days following a single injection of 100 pmol of amylin. Other groups of rats received continuous i3vt infusion (0.5 μl/h volume) of saline or 2.0 pmol/h amylin via osmotic minipumps over 10 days. Food intake over the 10-day infusion was significantly suppressed in amylin-treated rats as compared to that of controls. Consequently, by the 4th day of infusion, amylin rats weighed significantly less than baseline relative to saline controls, and this difference persisted throughout the remainder of the infusion period. At sacrifice (Day 10), the percent of body weight from retroperitoneal fat depots was significantly lower in the amylin-treated rats, indicative of a reduction of total body adiposity. In summary, the results support the hypothesis that amylin acts as a signal to the brain contributing to the maintenance of long-term energy balance.