Wide dynamic range detection of bi-directional flow in Doppler OCT using 2-dimensional Kasai estimator

Department of Physics, Ryerson University, Toronto, Ontario, Canada
Optics Letters (Impact Factor: 3.29). 02/2007; 32(3):253-5. DOI: 10.1364/OL.32.000253
Source: PubMed


We demonstrate extended axial flow velocity detection range in a time-domain Doppler optical coherence tomography (DOCT) system using a modified Kasai velocity estimator with computations in both the axial and transverse directions. For a DOCT system with an 8 kHz rapid-scanning optical delay line, bidirectional flow experiments showed a maximum detectable speed of >56 cm/s using the axial Kasai estimator without the occurrence of aliasing, while the transverse Kasai estimator preserved the approximately 7 microm/s minimum detectable velocity to slow flow. By using a combination of transverse Kasai and axial Kasai estimators, the velocity detection dynamic range was over 100 dB. Through a fiber-optic endoscopic catheter, in vivoM-mode transesophageal imaging of the pulsatile blood flow in rat aorta was demonstrated, for what is for the first time to our knowledge, with measured peak systolic blood flow velocity of >1 m/s, while maintaining good sensitivity to detect aortic wall motion at <2 mm/s, using this 2D Kasai technique.

Download full-text


Available from: Victor X D Yang
  • Source
    • "The CGD probe with confocal optics design enable us to target a 0.4 mm capillary (Fig. 4A) and differentiate blood vessels that are only 1 mm apart (Fig. 5). On the other hand, Doppler optical coherence tomography (DOCT) has high spatial resolution (~10 μm), high temporal resolution (40 Hz) and wide flow speed dynamic range (7 μm/s to 52 cm/s) [16], but it requires extensive post processing and an expensive system to obtain the high resolution images. In contrast, CGD is a simple, robust and low-cost sensing system, which provides an audio signal that is rich in content, yet is easy for the operator to interpret (Fig. 5 ( "
    [Show abstract] [Hide abstract]
    ABSTRACT: Miniature optical sensors that can detect blood vessels in front of advancing instruments will significantly benefit many interventional procedures. Towards this end, we developed a thin and flexible coherence-gated Doppler (CGD) fiber probe (O.D. = 0.125 mm) that can be integrated with minimally-invasive tools to provide real-time audio feedback of blood flow at precise locations in front of the probe. Coherence-gated Doppler (CGD) is a hybrid technology with features of laser Doppler flowmetry (LDF) and Doppler optical coherence tomography (DOCT). Because of its confocal optical design and coherence-gating capabilities, CGD provides higher spatial resolution than LDF. And compared to DOCT imaging systems, CGD is simpler and less costly to produce. In vivo studies of rat femoral vessels using CGD demonstrate its ability to distinguish between artery, vein and bulk movement of the surrounding soft tissue. Finally, by placing the CGD probe inside a 30-gauge needle and advancing it into the brain of an anesthetized sheep, we demonstrate that it is capable of detecting vessels in front of advancing probes during simulated stereotactic neurosurgical procedures. Using simultaneous ultrasound (US) monitoring from the surface of the brain we show that CGD can detect at-risk blood vessels up to 3 mm in front of the advancing probe. The improved spatial resolution afforded by coherence gating combined with the simplicity, minute size and robustness of the CGD probe suggest it may benefit many minimally invasive procedures and enable it to be embedded into a variety of surgical instruments.
    Full-text · Article · May 2013 · Biomedical Optics Express
  • Source
    • "The maximum detectable velocity, when multiple aliasing rings are visible, is affected by a combination of factors including SNR, spatial resolution, and the performance of the phase unwrapping techniques. In principle, phase unwrapping technique breaks down when the velocity gradient equivalent to 2π occurs over a spatial dimension comparable to the resolution of the OCT system [25]. In practice, reduced SNR due to the low scattering flush fluid (1.5% blood in saline) will further decrease the maximal detectable velocity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Feasibility of detecting intravascular flow using a catheter based endovascular optical coherence tomography (OCT) system is demonstrated in a porcine carotid model in vivo. The effects of A-line density, radial distance, signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability of the swept wavelength laser and interferometer system on Doppler shift detection limit were investigated in stationary and flow phantoms. Techniques for NURD induced phase shift artifact removal were developed by tracking the catheter sheath. Detection of high flow velocity (~51 cm/s) present in the porcine carotid artery was obtained by phase unwrapping techniques and compared to numerical simulation, taking into consideration flow profile distortion by the eccentrically positioned imaging catheter. Using diluted blood in saline mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular flow and structural OCT imaging of the carotid artery wall was feasible. To our knowledge, this is the first in vivo demonstration of Doppler imaging and absolute measurement of intravascular flow using a rotating fiber catheter in carotid artery.
    Full-text · Article · Sep 2012 · Biomedical Optics Express
  • Source
    • "These capabilities could be valuable for screening the vessels posing high risk in neurosurgery. We acknowledge that the aliasing problem may hinder using DOCT signal to quantify blood flow; however, we can work around this problem by using velocity variance [37] or axial Kasai algorithm [40]. Also, the high speed Fourier domain mode locking laser should be able to increase the velocity detection limit from one to two orders [41,42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication with current methods. Moreover, cerebrospinal fluid (CSF) leakage during surgery can shift the brain rendering the predetermined coordinates unreliable. In order to address these challenges, we developed a forward-imaging OCT probe (740 μm O.D.) using a gradient-index (GRIN) rod lens that can provide real-time imaging feedback for avoiding at-risk vessels (8 frames/s with 1024 A-scans per frame for OCT/DOCT dual imaging) and guiding the instrument to specific targets with 12 μm axial resolution (100 frames/s with 160 A-scans per frame for OCT imaging only). The high signal-to-background characteristic of DOCT provides exceptional sensitivity in detecting and quantifying the blood flow within the sheep brain parenchyma in real time. The OCT/DOCT dual imaging also demonstrated its capability to differentiate the vessel type (artery/vein) on rat's femoral vessels. We also demonstrated in ex vivo human brain that the location of the tip of the OCT probe can be inferred from micro-anatomical landmarks in OCT images. These findings demonstrate the suitability of OCT guidance during stereotactic procedures in the brain and its potential for reducing the risk of cerebral hemorrhage.
    Full-text · Article · Dec 2011 · Optics Express
Show more