The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy

Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9110, USA.
International Journal of Cancer (Impact Factor: 5.09). 04/2007; 120(8):1795-802. DOI: 10.1002/ijc.22405
Source: PubMed


The long-term disease-free survival in patients with metastatic transitional cell carcinoma (TCC) is still considerably low. Novel chemotherapeutic agents are needed to decrease the morbidity and mortality of TCC. In this study, we have evaluated several epigenetic modifiers for their therapeutic application in bladder cancer. Both histone deacetylase inhibitors (FK228, TSA) and DNA hypomethylating agent (5-Azacytidine) were tested using in vitro assays such as cell viability, cell cycle analysis and western blot to determine their mechanisms of action. Drug combination experiments were also designed to study any additive or synergistic effects of these agents. In addition, two bladder cancer xenograft models (one subcutaneous and one orthotopic) were employed to assess the therapeutic efficacy of these agents in vivo. Three agents exhibited various growth inhibitory effects on 5 different TCC cell lines in a dose- and time-dependent manner. In addition to G2/M cell cycle arrest, FK228 is more potent in inducting apoptosis than the two other single agents, and combination of both FK228 and 5-Aza further enhances this effect. p21 induction is closely associated with FK228 or TSA but not 5-Aza, which is mediated via p53-independent pathway. Consistent with in vitro results, FK228 exhibited a significant in vivo growth inhibition of TCC tumor in both subcutaneous and orthotopic xenograft models. FK228 is a potent chemotherapeutic agent for TCC in vivo with minimal undesirable side effects. The elevated p21 level mediated via p53 independent pathway is a hallmark of FK228 mechanism of action.

Download full-text


Available from: Edmond Richer
  • Source
    • "In the present study, we evaluated the optimal treatment schedule for the cytotoxicity of 5-azaC in vitro and in vivo and used minimally toxic drug concentrations combined with radiotherapy for further investigations. Our findings agree with previous studies that showed that concentrations of 1 μmol/L, as used in our current study, did not induce substantial cytotoxicity in colorectal carcinoma or bladder cancer cell lines [6], [32]. Our in vitro experiments showed that the clonogenic ability of CNE2 and SUNE1 cells was suppressed by IR alone, and further suppressed by the combination of 5-azaC and IR. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.
    Full-text · Article · Apr 2014 · PLoS ONE
  • Source
    • "The most challenging task in molecular analysis of bladder cancer is to establish the clinical relevance of each molecular subgroup with respect to various tumor characteristics, beyond the histologic appearance . A variety of molecular markers, such as cell cycle regulators [18] [19] [20], cell proliferation promoters [21], signal transduction factors [22] [23], apoptosis modulators [24] [25], extracellular matrix–modulating molecules [26] [27], and angiogenesis regulators [28] [29], have been found to be associated with tumor grade and staging [13] [30], risk of recurrence [29] [31] [32], and progression [33] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transitional cell (urothelial) carcinoma of the bladder is the second most common urologic malignancy and is one of the best understood neoplasms, with relatively well-defined pathogenetic pathways, natural history, and tumor biology. Conventional clinical and pathologic parameters are widely used to grade and stage tumors and to predict clinical outcome of transitional cell carcinoma; but the predictive ability of these parameters is limited, and there is a lack of indices that could allow prospective assessment of risk for individual patients. In the last decade, a wide range of candidate biomarkers representing key pathways in carcinogenesis have been reported to be clinically relevant and potentially useful as diagnostic and prognostic molecular markers, and as potential therapeutic targets. The use of molecular markers has facilitated the development of novel and more accurate diagnostic, prognostic, and therapeutic strategies. FGFR3 and TP53 mutations have been recognized as key genetic pathways in the carcinogenesis of transitional cell carcinoma. FGFR3 appears to be the most frequently mutated oncogene in transitional cell carcinoma; its mutation is strongly associated with low tumor grade, early stage, and low recurrence rate, which confer a better overall prognosis. In contrast, TP53 mutations are associated with higher tumor grade, more advanced stage, and more frequent tumor recurrences. These molecular markers offer the potential to characterize individual urothelial neoplasms more completely than is possible by histologic evaluation alone. Areas in which molecular markers may prove valuable include prediction of tumor recurrence, molecular staging of transitional cell carcinoma, detection of lymph node metastasis and circulating cancer cells, identification of therapeutic targets, and prediction of response to therapy. With accumulating molecular knowledge of transitional cell carcinoma, we are closer to the goal of bridging the gap between molecular findings and clinical outcomes. Assessment of key genetic pathways and expression profiles could ultimately establish a set of molecular markers to predict the biological nature of tumors and to establish new standards for molecular tumor grading, classification, and prognostication. The main focus of this review is to discuss clinically relevant biomarkers that might be useful in the management of transitional cell carcinoma and to provide approaches in the analysis of molecular pathways that influence the clinical course of bladder cancer.
    Full-text · Article · Nov 2010 · Human pathology
  • Source
    • "Histone deacetylase inhibitors have also been shown to alter the expression of tumor suppressor genes. For example, the tumor suppressor p21 Waf1 has been shown to be upregulated with HDACIs in a number of cancer cell lines as well as in vascular smooth muscle cells [20] [21] [22] [23]. Given the activity of each of these agents when used as monotherapy, we sought to investigate whether IFN-β and HDACIs might have synergistic activity when used in combination to treat neuroblastoma. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Trichostatin A (TSA) is a potent histone deacetylase inhibitor and has demonstrated significant antitumor activity against a variety of cancer cell lines. Type I interferons have also shown significant antitumor as well as antiangiogenic activity. In this study, we examined the effectiveness of combination therapy of TSA and interferon beta (IFN-beta) on human neuroblastoma cells in vitro and in vivo using a murine model of retroperitoneal neuroblastoma. For in vitro experiments, plated human neuroblastoma cells (NB-1643 and NB-1691) were treated with vehicle or with IFN-beta, TSA, or both for 24 hours. Cytotoxicity was assessed by counting cells and expressing the results as a percentage of controls. Expression of the tumor suppressor p21(Waf1) was assessed by Western blot. For in vivo experiments, retroperitoneal neuroblastomas were established in severe combined immune deficiency (SCID) mice. Interferon beta was given using a gene therapy approach, administering 1.5 x 10(10) particles of an adeno-associated virus vector encoding human IFN-beta (AAV hIFN-beta) via tail vein as a single dose per mouse. Trichostatin A was given at a dose of 5 mg/kg every 48 hours subcutaneously. Treatment groups included controls, AAV hIFN-beta alone, TSA alone, and AAV hIFN-beta together with TSA. Tumor volume was assessed 2 weeks after the treatment began. After 24 hours, treatment with IFN-beta, TSA, and a combination of both resulted in a 45.3%, 68.1%, and 75% reduction in cell count relative to controls in the NB-1691 cell line. In the NB-1643 line, cell counts were reduced by 23%, 58%, and 62.3% respectively. In addition, NB-1691 cells treated with TSA showed increased expression of p21(Waf1) on Western blot. For in vivo experiments, control-, AAV hIFN-beta-, TSA-, and combination-treated tumors had the following final volumes: 1577.7 +/- 264.2 mm(3) (n = 3); 128.5 +/- 74.4 mm(3) (n = 4; P = .0001); 1248.7 +/- 673.9 mm(3) (n = 4; P = .48); and 127.5 +/- 36.8 mm(3) (n = 4; P = .0007), respectively. Neuroblastoma, because of its unique biology, continues to be a challenging tumor to treat, and many times these tumors are refractory to standard chemotherapeutic regimens. These data show that both TSA and IFN-beta inhibit neuroblastoma growth and that the combination may potentially provide a unique way to treat this difficult disease.
    Preview · Article · Feb 2008 · Journal of Pediatric Surgery
Show more