Mechanisms controlling protein release from lipidic implants: Effects of PEG addition

ArticleinJournal of Controlled Release 118(2):161-8 · May 2007with15 Reads
DOI: 10.1016/j.jconrel.2006.11.001 · Source: PubMed
Different types of tristearin-based implants for controlled rh-interferon alpha-2a (IFN-alpha) release were prepared by compression and thoroughly characterised in vitro. Hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was added as a co-lyophilisation agent for protein stabilisation and different amounts of polyethylene glycol (PEG) as efficient protein release modifier. To get deeper insight into the underlying mass transport mechanisms, the release of IFN-alpha, HP-beta-CD and PEG into phosphate buffer pH 7.4 was monitored simultaneously and appropriate analytical solutions of Fick's second law of diffusion were fitted to the experimental results. Importantly, the addition of only 5-20% PEG to the lipidic implants significantly altered the resulting protein release rates and the relative importance of the underlying mass transport mechanisms. The release of IFN-alpha from PEG-free implants was purely diffusion controlled. In contrast, in PEG-containing devices other phenomena were also involved in the control of protein release: the IFN-alpha release rate remained about constant over prolonged periods of time and the total amounts of mobile IFN-alpha increased. Interestingly, the release of PEG itself as well as of HP-beta-CD from the implants remained purely diffusion controlled, irrespective of the amount of added PEG. Thus, different mass transport mechanisms govern the release of the drug, co-lyophilisation agent and release modifier out of the lipidic implants.
    • "These will increase the release rate of the protein from the implant by creating channels in the polymer matrix (Kim et al., 2000). For example poly (ethylene glycol) (PEG) of different molecular weight has been used for this purpose (Cleek et al., 1997; Herrmann et al., 2007; Kim et al., 2000; Sax and Winter, 2012 ). Similarly, encapsulation of bovine serum albumin and D-mannitol into poly-urethane foam showed enhanced cefadroxil-release rates (Kim et al., 2000). "
    [Show abstract] [Hide abstract] ABSTRACT: Parenteral protein delivery requires preservation of the integrity of proteins and control over the release kinetics. In order to preserve the integrity, parenteral protein delivery formulations typically need to be processed at low temperatures. Therefore, we synthesized a novel low melting biodegradable hydrophilic multiblock copolymer composed of poly (ethylene glycol) and poly (ε-caprolactone) to allow extrusion at relatively low temperatures. We investigated the extrusion characteristics of this polymer and explored a strategy how to control the release of the model protein lysozyme from small diameter extruded implants. It was found that the polymer could be well extruded at temperatures as low as 55 ˚C. Moreover, lysozyme remained active both during extrusion as well as during release. Lysozyme release kinetics could be tailored by the co-incorporation of an oligosaccharide, inulin, which functions as a pore-forming excipient. It was concluded that this hydrophilic multiblock copolymer has promising characteristics for the preparation by melt extrusion of protein delivery implants with a release profile that is sustained over a period of more than 7 months.
    Full-text · Article · May 2013
    • "In addition, such drugs are likely to possess favorable characteristics in vivo, due to their potential controlled release capacity. It has already been proven that the addition of PEG to lipidic implants is a very efficient tool for adjusting desired protein release patterns.35 Moreover, research studies have indicated that a PEG coating around the nanocarrier helps to improve its stability in the biological fluids and facilitates the transport of bioactive molecules across the intestinal and nasal epithelia,36,37 thereby offering great hope of developing an oral drug delivery system. "
    [Show abstract] [Hide abstract] ABSTRACT: Gray selenium (Se) is one of the most widely used Se sources with very limited biocompatibility and bioactivity. In the present study, a simple method for the preparation of ultrasmall selenium nanoparticles (SeNPs) through direct nanolization of gray selenium by polyethylene glycol (PEG) was demonstrated. Monodisperse and homogeneous PEG-SeNPs with ultrasmall diameters were successfully prepared under optimized conditions. The products were characterized using various microscopic and spectroscopic methods, and the results suggest that the amphoteric properties of PEG and the coordination between oxygen and selenium atoms contributed to the formation of ultrasmall nanoparticles. PEG-SeNPs exhibited stronger growth inhibition on drug-resistant hepatocellular carcinoma (R-HepG2) cells than on normal HepG2 cells. Dose-dependent apoptosis was induced by PEG-SeNPs in R-HepG2 cells, as evidenced by an increase in the sub-G1 cell population. Further investigation on the underlying molecular mechanisms revealed that depletion of mitochondrial membrane potential and generation of superoxide anions contributed to PEG-SeNPs-induced apoptotic cell death in R-HepG2 cells. Our results suggest that PEG-SeNPs may be a candidate for further evaluation as a chemotherapeutic agent for drug-resistant liver cancer, and the strategy to use PEG200 as a surface decorator could be a highly efficient way to enhance the anticancer efficacy of nanomaterials.
    Article · Jul 2012
    • "However, the drug release behaviour of microspheres prepared by the present method was different from that of formulations prepared via conventional extrusion and spray congealing (Cavallari et al., 2007; Schulze and Winter, 2009). When formulations containing Compritol 888 ATO were prepared by the latter methods, the addition of amphiphilic or hydrophilic polymers was often needed to improve the dissolution behaviour (Savolainen et al., 2003; Herrmann et al., 2007 ). There are two possible reasons for this. "
    [Show abstract] [Hide abstract] ABSTRACT: Lipid-polymer composite microspheres (LP-MS) for colon-specific drug delivery were prepared using an ultrasonic spray freeze-drying technique. These microspheres, which consist of the pH-sensitive polymer Eudragit S100 and the non-polar lipid Compritol 888 ATO, were characterized by morphological and physicochemical properties. It was found that the LP-MS have a spherical lipid porous matrix with a smooth pH-sensitive polymer film on both internal and external surfaces, and the insoluble drug 10-hydroxycamptothecin was dispersed in an amorphous state in the carrier. Morphological changes of microparticles under different pH conditions were observed by confocal laser scanning microscopy, which showed that the lipid matrix in LP-MS restricted the swelling property of the polymer at pH 6.8. In drug release studies, less than 15% of the drug was released below pH 6.8, whereas more than 30% was released with a sustained-release model at pH 7.4. The LP-MS could provide a promising vehicle for colon drug delivery.
    Full-text · Article · Sep 2011
Show more