Article

Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet-rich plasma scaffold

Department of Orthopaedic Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, Massachusetts 02115, USA.
Journal of Orthopaedic Research (Impact Factor: 2.99). 08/2007; 25(8):1007-17. DOI: 10.1002/jor.20367
Source: PubMed

ABSTRACT

The anterior cruciate ligament (ACL) of the knee is an intra-articular ligament that fails to heal after primary repair. The medial collateral ligament (MCL) of the knee is an extra-articular ligament that heals uneventfully in the majority of cases. Why these two ligaments have such different responses to injury remains unclear. In this article, we address two hypotheses: first, that the histologic response to injury is different in intra-articular and extra-articular ligaments, and second, that the response of the intra-articular ligaments can be altered by placing a collagen-platelet-rich plasma (collagen-PRP) hydrogel in the wound site. Wounds were created in extra-articular ligaments (MCL and/or patellar ligament) and an intra-articular ligament (ACL) in canine knees, and the histologic response to injury evaluated at 3 days (n = 3), 7 days (n = 4), 3 weeks (n = 5), and 6 weeks (n = 5). In the 3-week (n = 5) and 6-week (n = 5) animals, bilateral central wounds were made in the ACLs and the wounds in one knee of each animal treated with a collagen-PRP hydrogel while the contralateral side was untreated. Extra-articular ligament wounds had greater filling of the wound site and increased presence in the wound site of fibrinogen, fibronectin, PDGF-A, TGF-beta1, FGF-2, and von Willebrand's factor when compared to intra-articular ligament wounds. Treatment of the intra-articular wound with a collagen-PRP hydrogel resulted in increased filling of the wound site with repair tissue that had similar profiles of growth factor and protein expression to the extra-articular ligament wounds. The use of a collagen-PRP scaffold can ameliorate histologic differences noted between healing extra-articular ligamentous wounds and nonhealing intra-articular ligamentous wounds. This study supports the hypothesis that premature scaffold failure may play a key role in the normally expected failure of the ACL to heal after injury.

Download full-text

Full-text

Available from: Martha M Murray, Nov 18, 2015
  • Source
    • "The underlying mechanism on this discrepancy remains unclear. Some investigators argued the factors such as different synovial environments (Murray et al., 2007), different blood supplies (Bumbasirevic and Lesic, 2005) and experienced different levels of mechanical forces (Andersen and Amis, 1994) contributed to the different healing abilities of ACL and MCL. But we believed that the intrinsic differences between ACL and MCL could better explain their differential healing abilities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The anterior cruciate ligament (ACL) is known to have a poor self-healing ability. In contrast, the medial collateral ligament (MCL) can heal relatively well and restore the joint function. Transforming growth factor-beta1 (TGF-β(1)) is considered to be an important chemical mediator in the wound healing of the ligaments. While the role of TGF-β(1)-induced expressions of the lysyl oxidases (LOXs) and matrix metalloproteinases (MMPs), which respectively facilitate the extracellular matrix (ECM) repair and degradation, is poorly understood. In this study, we used equibiaxial stretch chamber to mimic mechanical injury of ACL and MCL fibroblasts, and aimed to determine the intrinsic differences between ACL and MCL by characterizing the differential expressions of LOXs and MMPs in response to TGF-β(1) after mechanical injury. By using semi-quantitative PCR, quantitative real-time PCR, western blot and zymography, we found TGF-β(1) induced injured MCL to express more LOXs than injured ACL (up to 1.85-fold in LOX, 2.21-fold in LOXL-1, 1.71-fold in LOXL-2, 2.52-fold in LOXL-3 and 3.32-fold in LOXL-4). Meanwhile, TGF-β(1) induced injured ACL to express more MMPs than injured MCL fibroblasts (up to 2.33-fold in MMP-1, 2.45-fold in MMP-2, 1.89-fold in MMP-3 and 1.50-fold in MMP-12). The further protein results were coincident with the gene expressions above. The different expressions of LOXs and MMPs inferred the intrinsic differences between ACL and MCL, and the intrinsic differences could help to explain their differential healing abilities.
    Full-text · Article · Jan 2013 · Journal of Biomechanics
  • Source
    • "There has been a recent upsurge in interest in using extracellular matrix-based materials to enhance repair of tissues within the knee joint. Specifically for the Anterior Cruciate Ligament (ACL), these materials have been used as platelet stabilization scaffolds in a central defect model [1, 2], as well as in a complete ACL transection model [3, 4] and also to enhance healing of an ACL reconstruction [5]. In those studies, these materials appear promising with regards to improving the biomechanical strength of the repairs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Collagen is an important biomaterial in intra-articular tissue engineering, but there are unanswered questions about its safety. We hypothesize that the addition of type-I-collagen for primary repair of the Anterior Cruciate Ligament (ACL) might result in a local and systemic reaction in a porcine model after 15 weeks as demonstrated by joint effusion, synovial thickening, elevated intraarticular and systemic leukocyte counts. Further, this reaction might be aggravated by the addition of a platelet concentrate. Eighteen porcine ACLs were transected and repaired with either sutures (n=6), a collagen sponge (n=6), or a collagen-platelet-composite (CPC; n=6). Twelve intact contralateral knees served as controls (n=12). No significant synovial thickening or joint effusion was seen in the collagen-treated knees. Synovial fluid leukocyte counts showed no significant differences between surgically treated and intact knees, and no differences were seen in leukocyte counts of the peripheral blood. The addition of a platelet concentrate to the knee joint resulted in lower serum levels of IL-1β, but serum levels of TNF-α were not significantly different between groups. In conclusion, the presence of collagen, with or without added platelets, did not increase the local or systemic inflammatory reactions following surgery, suggesting that Type I collagen is safe to use in the knee joint.
    Full-text · Article · Jun 2012 · The Open Orthopaedics Journal
  • Source
    • "The ligament tissue maturation index (LTMI) of Murray et al. [20] was used to evaluate the maturation of tendon grafts according to the following 3 criteria: [1] cellular aspects including cell density, nuclear shape, and orientation; [2] extracellular matrix characteristics, such as crimp; and [3] vascular features including blood vessel density and maturity (total score, 28 points). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a novel technique to improve tendon-bone attachment by hybridizing calcium phosphate (CaP) with a tendon graft using an alternate soaking process. However, the long-term result with regard to the interface between the tendon graft and the bone is unclear. We analyzed bone tunnel enlargement by computed tomography and histological observation of the interface and the tendon graft with and without the CaP hybridization 2 years after anterior cruciate ligament (ACL) reconstruction in goats using EndoButton and the postscrew technique (CaP, n = 4; control, n = 4). The tibial bone tunnel enlargement rates in the CaP group were lower than those in the control group (p < 0.05). In the CaP group, in the femoral and tibial bone tunnels at the anterior and posterior of the joint aperture site, direct insertion-like formation that contained a cartilage layer without tidemarks was more observed at the tendon-bone interface than in the control group (p < 0.05). Moreover, the gap area between the tendon graft and the bone was more observed at the femoral bone tunnel of the joint aperture site in the control group than in the CaP group (p < 0.05). The maturation of the tendon grafts determined using the ligament tissue maturation index was similar in both groups. The CaP-hybridized tendon graft enhanced the tendon-bone healing 2 years after ACL reconstruction in goats. The use of CaP-hybridized tendon grafts can reduce the bone tunnel enlargement and gap area associated with the direct insertion-like formation in the interface near the joint.
    Full-text · Article · Dec 2011 · Sports Medicine Arthroscopy Rehabilitation Therapy & Technology
Show more