Oral Donepezil Reduces Hypersensitivity after Nerve Injury by a Spinal Muscarinic Receptor Mechanism

ArticleinAnesthesiology 106(5):1019-25 · June 2007with4 Reads
Impact Factor: 5.88 · DOI: 10.1097/01.anes.0000265163.22007.6d · Source: PubMed


    Cholinesterase inhibitors which reach the central nervous system produce pain relief but are poorly tolerated because of gastrointestinal side effects. Here, the authors tested whether donepezil, a central nervous system penetrant cholinesterase inhibitor with a low incidence of gastrointestinal side effects, would relieve hypersensitivity in an animal model of neuropathic pain.
    Male rats were anesthetized, and the L5 and L6 spinal nerves were ligated unilaterally. Hypersensitivity was measured by withdrawal threshold to von Frey filament application to the hind paw after oral donepezil, and antagonists administered centrally and peripherally. Efficacy of chronic oral donepezil to relieve hypersensitivity was tested, and activation of G proteins by M(2) muscarinic receptors was determined by carbachol-stimulated [(35)S]guanosine triphosphate (gamma)S autoradiography in brain and spinal cord.
    Spinal nerve ligation resulted in hypersensitivity that was more severe ipsilateral than contralateral to surgery. Oral donepezil reduced hypersensitivity bilaterally in a dose-dependent manner for 2 h, and this effect was blocked by spinal but not supraspinal or peripheral muscarinic receptor antagonism. Oral donepezil maintained efficacy over 2 weeks of twice daily administration, and this treatment did not lead to desensitization of muscarinic receptor-coupled G proteins in brain or spinal cord.
    Donepezil, a well-tolerated cholinesterase inhibitor used in the treatment of Alzheimer dementia, reduces hypersensitivity in this rat model of neuropathic pain by actions on muscarinic receptors in the spinal cord. Lack of tolerance to this effect, in contrast to rapid tolerance to direct receptor agonists, suggests that cholinesterase inhibition may be useful in the treatment of neuropathic pain.