Determining membrane protein structures: still a challenge. Trends Biochem Sci

INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Faculté de Médecine X. Bichat, Université Paris 7, BP 416, F-75018, Paris, France.
Trends in Biochemical Sciences (Impact Factor: 11.23). 07/2007; 32(6):259-70. DOI: 10.1016/j.tibs.2007.04.001
Source: PubMed


Determination of structures and dynamics events of transmembrane proteins is important for the understanding of their function. Analysis of such events requires high-resolution 3D structures of the different conformations coupled with molecular dynamics analyses describing the conformational pathways. However, the solution of 3D structures of transmembrane proteins at atomic level remains a particular challenge for structural biochemists--the need for purified and functional transmembrane proteins causes a 'bottleneck'. There are various ways to obtain 3D structures: X-ray diffraction, electron microscopy, NMR and modelling; these methods are not used exclusively of each other, and the chosen combination depends on several criteria. Progress in this field will improve knowledge of ligand-induced activation and inhibition of membrane proteins in addition to aiding the design of membrane-protein-targeted drugs.

Download full-text


Available from: Jean-Jacques Lacapere
  • Source
    • "Membrane proteins often act as cellular receptors, transporters and various ion channels, and are involved in several crucial cellular processes, such as immune responses, nutrient uptake and nervous system signaling [1-6]. A structural understanding of these membrane proteins is beneficial to elucidating the role that each plays in the above processes [7,8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human liver and lymph node sinusoidal endothelial cell C-type lectin (hLSECtin), a type II integral membrane protein, containing a Ca(2+)-dependent carbohydrate recognition domain (CRD), has a well-established biological activity, yet its three-dimensional structure is unknown due to low expression yields and aggregation into inclusion bodies. Previous study has demonstrated that the HIV-1 virus-encoded Tat peptide ('YGRKKRRQRRR') can increase the yields and the solubility of heterologous proteins. However, whether the Tat peptide could promote the high-yield and soluble expression of membrane proteins in Escherichia coli is not known. Therefore, the prokaryotic expression vector pET28b-Tat-hLSECtin-CRD (using pET28b and pET28b-hLSECtin-CRD as controls) was constructed, and transformed into E. coli BL21 (DE3) cells and induced with isopropyl-β-d-thiogalactoside (IPTG) followed with identifying by SDS-PAGE and Western blot. Subsequently, the bacterial subcellular structure, in which overexpressed the heterologous proteins Tat-hLSECtin-CRD and Tat-free hLSECtin-CRD, was analyzed by transmission electron microscope (TEM) respectively, and the mannose-binding activity of Tat-hLSECtin-CRD was also determined. Expectedly, the solubility of Tat-LSECtin-CRD significantly increased compared to Tat-free LSECtin-CRD (**p < 0.01) with prolonged time, and the Tat-LSECtin-CRD had a significant mannose-binding activity. The subcellular structure analysis indicated that the bacterial cells overexpressed Tat-hLSECtin-CRD exhibited denser region compared with controls, while dot denser region aggregated in the two ends of bacterial cells overexpressed Tat-free hLSECtin-CRD. This study provided a novel method for improving the soluble expression of membrane proteins in prokaryotic systems by fusion with the Tat peptide, which may be potentially expanded to the expression of other membrane proteins.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    • "Structural studies of membrane protein are intricate and several approaches are possible [12]. Among them, electron microscopy can be used to study membrane protein organization within the artificial membranes either by two-dimensional crystallization in solution or by reorganization of adsorbed proteins under a lipid monolayer at the air/water interface [13] [14] [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Translocator protein TSPO is a membrane protein highly conserved in evolution which does not belong to any structural known family. TSPO is involved in physiological functions among which transport of molecules such as cholesterol to form steroids and bile salts in mammalian cells. Membrane protein structure determination remains a difficult task and needs concomitant approaches (for instance X-ray- or Electron-crystallography and NMR). Electron microscopy and two-dimensional crystallization under functionalized monolayers have been successfully developed for recombinant tagged proteins. The difficulty comes from the detergent carried by membrane proteins that disrupt the lipid monolayer. We identified the best conditions for injecting the histidine tagged recombinant TSPO in detergent in the subphase and to keep the protein stable. Reconstituted recombinant protein into a lipid bilayer favors its adsorption to functionalized monolayers and limits the disruption of the monolayer by reducing the amount of detergent. Finally, we obtained the first transmission electron microscopy images of recombinant mouse TSPO negatively stained bound to the lipid monolayer after injection into the subphase of pre-reconstituted TSPO in lipids. Image analysis reveals that circular objects could correspond to an association of at least four monomers of mouse TSPO. The different amino acid compositions and the location of the polyhistidine tag between bacterial and mouse TSPO could account for the formation of dimer versus tetramer, respectively. The difference in the loop between the first and second putative transmembrane domain may contribute to distinct monomer interaction, this is supported by differences in ligand binding parameters and biological functions of both proteins.
    Full-text · Article · Jul 2012 · Biochimica et Biophysica Acta
  • Source
    • "This is the first report, to our knowledge, of the successful expression of recombinant hENT1 (N-HAT-3ÂFLAG- hENT1) in a bacterial host. This is a significant step towards three-dimensional analysis of hENT1, a clinically important drug transporter, because it represents an important step towards overcoming the problem of low yields of mammalian ENTs and producing sufficient concentrations of protein (up to 10 mg/mL) for future structural studies (Lacapère et al. 2007). This approach can be scaled up and uses a lac promoter to drive expression plus tandem affinity purification to isolate N-HAT-3ÂFLAG-hENT1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside transporters (NTs) are integral membrane proteins necessary for the cellular entry of nucleoside analog drugs used in chemotherapeutic treatment of conditions such as cancer and viral or parasitic infections. NTs are also the targets of certain drugs used in the treatment of various cardiovascular conditions. Because of the importance of NTs in drug uptake, determination of the three-dimensional structure of these proteins, particularly hENT1, has the potential to improve these treatments through structure-based design of more specifically targeted and transported drugs. In this paper, we use NMR spectroscopy to investigate the structure of the large intracellular loop between transmembrane domains 6 and 7 and we also describe a method for the successful overexpression of full-length hENT1 in a bacterial system. Recombinant tandem histidine-affinity (HAT) and 3×FLAG tagged hENT1 was overexpressed in E. coli, affinity purified, and functionally characterized by nitrobenzylthioinosine (NBTI) binding. Anti-3×FLAG immunodetection confirmed the expression of N-HAT-3×FLAG-hENT1, while increased NBTI binding (3.2-fold compared with controls) confirmed the conformational integrity of the recombinant hENT1 within the bacterial inner membrane. Yields of recombinant hENT1 using this approach were ~15 µg/L of bacterial culture and this approach provides a basis for large-scale production of protein for a variety of purposes.
    Full-text · Article · Apr 2011 · Biochemistry and Cell Biology
Show more