Intestinal cholesterol transport proteins: An update and beyond

Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
Current Opinion in Lipidology (Impact Factor: 5.66). 07/2007; 18(3):310-8. DOI: 10.1097/MOL.0b013e32813fa2e2
Source: PubMed


Various studies have delineated the causal role of dietary cholesterol in atherogenesis. Strategies have thus been developed to minimize cholesterol absorption, and cholesterol transport proteins found at the apical membrane of enterocytes have been extensively investigated. This review focuses on recent progress related to various brush-border proteins that are potentially involved in alimentary cholesterol transport.
Molecular mechanisms responsible for dietary cholesterol and plant sterol uptake have not been completely defined. Growing evidence, however, supports the concept that several proteins are involved in mediating intestinal cholesterol transport, including SR-BI, NPC1L1, CD36, aminopeptidase N, P-glycoprotein, and the caveolin-1/annexin-2 heterocomplex. Other ABC family members (ABCA1 and ABCG5/ABCG8) act as efflux pumps favoring cholesterol export out of absorptive cells into the lumen or basolateral compartment. Several of these cholesterol carriers influence intracellular cholesterol homeostasis and are controlled by transcription factors, including RXR, LXR, SREBP-2 and PPARalpha. The lack of responsiveness of NPC1L1-deficient mice to ezetimibe suggests that NPC1L1 is likely to be the principal target of this cholesterol-lowering drug.
The understanding of the role, genetic regulation and coordinated function of proteins mediating intestinal cholesterol transport may lead to novel ways of treating cardiovascular disease.

10 Reads
  • Source
    • "Although its role in the liver and steroidogenic tissues is well established, its functions in peripheral tissues are not clear. In enterocytes, SR-BI is thought to promote cholesterol absorption (Altmann et al. 2002; Levy et al. 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Scavenger receptor class B type I (SR-BI), the Scarb1 gene product, is a high-density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1-deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1-null and wild-type (WT) cells. Scarb1 genic expression was down-regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1-null mice. Genic expression of co-receptors for Wnt signaling, namely LDL-related protein (Lrp) 5 and Lrp8, was increased, respectively, by two- and threefold, and of transcription target-genes axis inhibition protein 2 (Axin2) and lymphoid enhancer-binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs-related protein 1 (Dkk1) were found to be increased 10- to 20-fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1-deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice.
    Full-text · Article · Oct 2014
  • Source
    • "Following food consumption, zebrafish accumulate cytoplasmic lipid drops (LD) in their enterocytes (Walters, unpublished). From there, fats are likely burned via oxidative pathways in the mitochondria or peroxisomes or packaged into chylomicrons , which are secreted from the basolateral surface of enterocytes into lymphatic or blood vessels (Field, 2001; Levy et al., 2007). In chickens, chylomicron production and secretion is highly conserved, with the exception that lipoproteins are secreted from the intestine directly into the portal vein and thus are termed portomicrons (Bensadoun and Rothfeld, 1972; Griffin et al., 1982). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism.
    Full-text · Article · Jan 2011 · Methods in cell biology
  • Source
    • "Recent studies have revealed that bile acids are ligands of several nuclear hormone receptors involved in regulating bile acid synthesis, transport, and cholesterol metabolism. The cholesterol pool is derived from two major sources: the synthesis of cholesterol by the liver and the absorption of cholesterol from the intestine [11]. The cholesterol pool rarely changes much because cholesterol input is approximately balanced by cholesterol output via factors such as excretion in bile/feces, skin excretion, and steroid hormone synthesis [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R.) capsulatus. A total of 40 laying hens (20-week-old) were assigned into four dietary treatment groups and fed a basal diet (as a control) or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (P < .05). Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (P < .05). The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of (14)C from 1-(14)C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (P < .05). These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver.
    Full-text · Article · Jun 2010 · Cholesterol
Show more

Similar Publications