Randomized trial of weight-loss-diets for young adults varying in fish oil content

Unit for Nutrition Research, Department of Food Science and Human Nutrition, Landspitali University Hospital, University of Iceland, Eiriksgata-29, 101 Reykjavik, Iceland.
International Journal of Obesity (Impact Factor: 5). 11/2007; 31(10):1560-6. DOI: 10.1038/sj.ijo.0803643
Source: PubMed


To investigate the effect of including seafood and fish oils, as part of an energy-restricted diet, on weight loss in young overweight adults.
Randomized controlled trial of energy-restricted diet varying in fish and fish oil content was followed for 8 weeks. Subjects were randomized to one of four groups: (1) control (sunflower oil capsules, no seafood); (2) lean fish (3 x 150 g portions of cod/week); (3) fatty fish (3 x 150 g portions of salmon/week); (4) fish oil (DHA/EPA capsules, no seafood). The macronutrient composition of the diets was similar between the groups and the capsule groups, were single-blinded.
A total of 324 men and women aged 20-40 years, BMI 27.5-32.5 kg/m(2) from Iceland, Spain and Ireland.
Anthropometric data were collected at baseline, midpoint and endpoint. Confounding factors were accounted for, with linear models, for repeated measures with two-way interactions. The most important interactions for weight loss were (diet x energy intake), (gender x diet) and (gender x initial-weight).
An average man in the study (95 kg at baseline receiving 1600 kcal/day) was estimated to lose 3.55 kg (95% CI, 3.14-3.97) (1); 4.35 kg (95% CI, 3.94-4.75) (2); 4.50 kg (95% CI, 4.13-4.87) (3) and 4.96 kg (95% CI, 4.53-5.40) on diet (4) in 4 weeks, from baseline to midpoint. The weight-loss from midpoint to endpoint was 0.45 (0.41-0.49) times the observed weight loss from baseline to midpoint. The diets did not differ in their effect on weight loss in women. Changes in measures of body composition were in line with changes in body weight.
In young, overweight men, the inclusion of either lean or fatty fish, or fish oil as part of an energy-restricted diet resulted in approximately 1 kg more weight loss after 4 weeks, than did a similar diet without seafood or supplement of marine origin. The addition of seafood to a nutritionally balanced energy-restricted diet may boost weight loss.

  • Source
    • "Long chain omega-3 fatty acids have been considered as potential body composition modulators with or without dietary energy restriction [44]. However, due to significant heterogeneity in population, body composition measurement, length of trial and dose of LCn-3s some trials have reported no effect [45-50], while others have indicated some effect [51-54]. However, of the studies reporting an improvement of one of more body composition parameters after increased LCn-3s intake, the clinical significance of the changes in LBM seen are minimal [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of lean body mass (LBM) is a common occurrence after treatment for breast cancer and is related to deleterious metabolic health outcomes [Clin Oncol, 22(4):281-288, 2010; Appl Physiol Nutr Metab, 34(5):950-956, 2009]. The aim of this research is to determine the effectiveness of long chain omega-3 fatty acids (LCn-3s) and exercise training alone, or in combination, in addressing LBM loss in breast cancer survivors.Methods/design: A total of 153 women who have completed treatment for breast cancer in the last 12 months, with a Body Mass Index (BMI) of 20 to 35kg/m2, will be randomly assigned to one of 3 groups: 3g/d LCn-3s (LC), a 12-week nutrition and exercise education program plus olive oil (P-LC) or the education program plus LCn-3s (E-LC). Participants randomised to the education groups will be blinded to treatment, and will receive either olive oil placebo (P) or LCn-3 provision, while the LC group will be open label. The education program includes nine 60-75min sessions over 12 weeks that will involve breast cancer specific healthy eating advice, plus a supervised exercise session run as a resistance exercise circuit. They will also be advised to conduct the resistance training and aerobic training 5 to 7 days per week collectively. Outcome measures will be taken at baseline, 12-weeks and 24-weeks. The primary outcome is % change in LBM as measured by the air displacement plethysmograhy. Secondary outcomes include quality of life (FACT-B + 4) and inflammation (C-Reactive protein: CRP). Additional measures taken will be erythrocyte fatty acid analysis, fatigue, physical activity, menopausal symptoms, dietary intake, joint pain and function indices. This research will provide the first insight into the efficacy of LCn-3s alone or in combination with exercise in breast cancer survivors with regards to LBM and quality of life. In addition, this study is designed to improve evidence-based dietetic practice, and how specific dietary prescription may link with appropriate exercise interventions.Trials registration: ACTRN12610001005044; and World Health Organisation Universal trial number: U1111-1116-8520.
    Full-text · Article · Apr 2014 · BMC Cancer
  • Source
    • "Apart from quantity, the quality of dietary proteins is of significance in the prevention of obesity. Prospective cohort studies have demonstrated that consumption of fish as a part of healthy diet is associated with lower body weight (Schulze et al. 2006; Shubair et al. 2005) and randomized controlled studies show that the inclusion of fish in energy-restricted diets resulted in greater weight loss compared to control diets without seafood (Thorsdottir et al. 2007; Ramel et al. 2009). In addition, incorporation of a daily fish meal into a weight-loss regimen was more effective than either fish consumption or weight loss alone at improving glucose-insulin metabolism and dyslipidemia (Mori et al. 1999). "
    [Show abstract] [Hide abstract]
    ABSTRACT: High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high-sucrose diets with protein sources of increasing endogenous taurine content, i.e., chicken, cod, crab and scallop, for 6 weeks. The energy intake was lower in crab and scallop-fed mice than in chicken and cod-fed mice, but only scallop-fed mice gained less body and fat mass. Liver mass was reduced in scallop-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice. Electronic supplementary material The online version of this article (doi:10.1007/s00726-014-1715-1) contains supplementary material, which is available to authorized users.
    Full-text · Article · Mar 2014 · Amino Acids
  • Source
    • "Available data on the effects of n3-PUFA on body weight and composition in humans are controversial. Although it has been suggested that the beneficial effects of n-3 PUFAs are restricted to lean individuals [29], in overweight/obese subjects, n-3 PUFA supplementation improved the body weight loss induced by caloric restriction [30] while it improved the adipose mass reduction induced by exercise, with no effect on energy expenditure [31]. On the other hand, eicosapentaenoic acid/docosahexaenoic acid supplementation failed to modify the response of overweight individuals to nutritional/exercise intervention [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding.
    Full-text · Article · Dec 2013 · Lipids in Health and Disease
Show more