Article

Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine

Center for Molecular and Mitochondrial Medicine and Genetics, Department of Biological Chemistry, University of California, Irvine, California 92697-3940, USA.
Annual Review of Biochemistry (Impact Factor: 30.28). 02/2007; 76(1):781-821. DOI: 10.1146/annurev.biochem.76.081205.150955
Source: PubMed

ABSTRACT

The human cell is a symbiosis of two life forms, the nucleus-cytosol and the mitochondrion. The nucleus-cytosol emphasizes structure and its genes are Mendelian, whereas the mitochondrion specializes in energy and its mitochondrial DNA (mtDNA) genes are maternal. Mitochondria oxidize calories via oxidative phosphorylation (OXPHOS) to generate a mitochondrial inner membrane proton gradient (DeltaP). DeltaP then acts as a source of potential energy to produce ATP, generate heat, regulate reactive oxygen species (ROS), and control apoptosis, etc. Interspecific comparisons of mtDNAs have revealed that the mtDNA retains a core set of electron and proton carrier genes for the proton-translocating OXPHOS complexes I, III, IV, and V. Human mtDNA analysis has revealed these genes frequently contain region-specific adaptive polymorphisms. Therefore, the mtDNA with its energy controlling genes may have been retained to permit rapid adaptation to new environments.

Full-text preview

Available from: qmul.ac.uk
  • Source
    • "Cancerous cells illustrates antagonistic properties towards intrinsic pathways of apoptotic [27, 28]. The symbiotic partnership of bacterium and mitochondria is approximate 2000 million year ago as nuclear–cytosolic organism [37, 38]. However it is not clear accurately what is the possible role of the bacteria and their proteins in development of different types of cancer, bacterial proteins that change the normal functions of mitochondria should attach to mitochondria and/or they must enter to the mitochondria during the course of infection. "
    [Show abstract] [Hide abstract] ABSTRACT: Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Full-text · Article · Mar 2016 · Oncotarget
  • Source
    • "Other polymorphisms might represent adaptations shaped by selection to the local environment (Dowling et al., 2008 ) or via coevolution to the population-specific nuclear backgrounds (Wolff et al., 2014). These variants might no longer be adaptive if expressed outside of the environments (Wallace, 2007) or nuclear backgrounds in which they originally evolved. The w 1118 nuclear background alongside which the twelve mitochondrial genotypes are expressed is not the natural nuclear DNA for any of the strains used in this study. "
    [Show abstract] [Hide abstract] ABSTRACT: The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development, and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially-mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. This article is protected by copyright. All rights reserved.
    Full-text · Article · Jan 2016 · Journal of Evolutionary Biology
    • "2. MEDICINA EVOLUTIVAEaton et al. 2002;LongoyFinch 2003;McKennayMosko 1994;Merlo et al. 2006;Nesse et al. 2010;Nesse y Stearns 2008;Trevathan et al. 1999;Trevathan et al. 2008;Wallace 2007;Wander et al. 2009Los cronogramas de las historias de vida de la mayoría de las especies presentan cierta plasticidad, lo que permite a los organismos ajustar su velocidad y estrategia de desarrollo a la disponibilidad de recursos y a los desafíos que encuentren. La plasticidad de estos procesos es el resultado de fuerzas de selección natural, e incluye no sólo cambios en la velocidad de desarrollo sino también cambios morfológicos, fisiológicos y de conducta. "
    [Show abstract] [Hide abstract] ABSTRACT: Cada uno es como Dios le hizo, y aún peor muchas veces." Miguel de Cervantes Saavedra 1. INTRODUCCIÓN Cuando hablamos de evolución, los seres humanos solemos solazarnos con sus resultados; tenemos un cerebro prodigioso, somos inteligentes, creativos y poseemos un lenguaje complejo. A diferencia de otros mamíferos, podemos caminar erguidos, tenemos poco pelo corporal y manos habilidosas gracias a sus pulgares oponibles. ¡No podemos quejarnos de nuestro cuerpo! ¿O sí? Si bien nuestro cuerpo está formado por sistemas sofisticados y estructuras complejas, es innegable que estos distan mucho de funcionar a la perfección. Diabetes, disfunciones cardiovasculares, estrés, infecciones, alergias, dificultades reproductivas y una vejez achacosa son parte de una larga lista de padecimientos humanos. La pregunta obvia e inevitable es: ¿Por qué pese a millones de años de selección natural el cuerpo humano es tan vulnerable? He aquí una de las grandes preguntas dentro de las ciencias de la salud. En este capítulo vamos a explorar brevemente algunas de las propuestas que la Medicina Evolutiva ha ofrecido como respuesta a esa pregunta.
    No preview · Chapter · Jan 2016
Show more