Agreement in Breast Cancer Classification between Microarray and Quantitative Reverse Transcription PCR from Fresh-Frozen and Formalin-Fixed, Paraffin-Embedded Tissues

University of North Carolina at Chapel Hill, North Carolina, United States
Clinical Chemistry (Impact Factor: 7.91). 08/2007; 53(7):1273-9. DOI: 10.1373/clinchem.2006.083725
Source: PubMed


Microarray studies have identified different molecular subtypes of breast cancer with prognostic significance. To transition these classifications into the clinical laboratory, we have developed a real-time quantitative reverse transcription (qRT)-PCR assay to diagnose the biological subtypes of breast cancer from fresh-frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) tissues.
We used microarray data from 124 breast samples as a training set for classifying tumors into 4 previously defined molecular subtypes: Luminal, HER2(+)/ER(-), basal-like, and normal-like. We used the training set data in 2 different centroid-based algorithms to predict sample class on 35 breast tumors (test set) procured as FF and FFPE tissues (70 samples). We classified samples on the basis of large and minimized gene sets. We used the minimized gene set in a real-time qRT-PCR assay to predict sample subtype from the FF and FFPE tissues. We evaluated primer set performance between procurement methods by use of several measures of agreement.
The centroid-based algorithms were in complete agreement in classification from FFPE tissues by use of qRT-PCR and the minimized "intrinsic" gene set (40 classifiers). There was 94% (33 of 35) concordance between the diagnostic algorithms when comparing subtype classification from FF tissue by use of microarray (large and minimized gene set) and qRT-PCR data. We found that the ratio of the diagonal SD to the dynamic range was the best method for assessing agreement on a gene-by-gene basis.
Centroid-based algorithms are robust classifiers for breast cancer subtype assignment across platforms and procurement conditions.

Download full-text


Available from: Michael Mullins, May 22, 2014
  • Source
    • "Recent studies suggested that certain non-polyA RNAs, either non-coding or protein coding, are functionally important [12–15]. Moreover, mRNA-Seq poorly captures partially degraded mRNAs, hence it is not an optimal method to use when the starting materials are from Formalin-Fixed and Paraffin-Embedded (FFPE) samples, because the RNAs from FFPE are degraded to a small average size [16]. To overcome these challenges, several rRNA depletion protocols have been developed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: RNA sequencing (RNA-Seq) is often used for transcriptome profiling as well as the identification of novel transcripts and alternative splicing events. Typically, RNA-Seq libraries are prepared from total RNA using poly(A) enrichment of the mRNA (mRNA-Seq) to remove ribosomal RNA (rRNA), however, this method fails to capture non-poly(A) transcripts or partially degraded mRNAs. Hence, a mRNA-Seq protocol will not be compatible for use with RNAs coming from Formalin-Fixed and Paraffin-Embedded (FFPE) samples. Results: To address the desire to perform RNA-Seq on FFPE materials, we evaluated two different library preparation protocols that could be compatible for use with small RNA fragments. We obtained paired Fresh Frozen (FF) and FFPE RNAs from multiple tumors and subjected these to different gene expression profiling methods. We tested 11 human breast tumor samples using: (a) FF RNAs by microarray, mRNA-Seq, Ribo-Zero-Seq and DSN-Seq (Duplex-Specific Nuclease) and (b) FFPE RNAs by Ribo-Zero-Seq and DSN-Seq. We also performed these different RNA-Seq protocols using 10 TCGA tumors as a validation set.The data from paired RNA samples showed high concordance in transcript quantification across all protocols and between FF and FFPE RNAs. In both FF and FFPE, Ribo-Zero-Seq removed rRNA with comparable efficiency as mRNA-Seq, and it provided an equivalent or less biased coverage on gene 3' ends. Compared to mRNA-Seq where 69% of bases were mapped to the transcriptome, DSN-Seq and Ribo-Zero-Seq contained significantly fewer reads mapping to the transcriptome (20-30%); in these RNA-Seq protocols, many if not most reads mapped to intronic regions. Approximately 14 million reads in mRNA-Seq and 45-65 million reads in Ribo-Zero-Seq or DSN-Seq were required to achieve the same gene detection levels as a standard Agilent DNA microarray. Conclusions: Our results demonstrate that compared to mRNA-Seq and microarrays, Ribo-Zero-Seq provides equivalent rRNA removal efficiency, coverage uniformity, genome-based mapped reads, and consistently high quality quantification of transcripts. Moreover, Ribo-Zero-Seq and DSN-Seq have consistent transcript quantification using FFPE RNAs, suggesting that RNA-Seq can be used with FFPE-derived RNAs for gene expression profiling.
    Full-text · Article · Jun 2014 · BMC Genomics
  • Source
    • "Methods that can be used from formalin-fixed, paraffin-embedded tissues are optimal since this is how samples are procured and archived in most pathology departments. The two preferred technologies for gene expression profiling from FFPE tissues are RT-qPCR [17,18] and Nanostring nCounter [29]. The nCounter system uses color-coded probes that bind directly to the RNA transcript without reverse transcription and PCR amplification. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Many methodologies have been used in research to identify the "intrinsic" subtypes of breast cancer commonly known as Luminal A, Luminal B, HER2-Enriched (HER2-E) and Basal-like. The PAM50 gene set is often used for gene expression-based subtyping; however, surrogate subtyping using panels of immunohistochemical (IHC) markers are still widely used clinically. Discrepancies between these methods may lead to different treatment decisions. Methods: We used the PAM50 RT-qPCR assay to expression profile 814 tumors from the GEICAM/9906 phase III clinical trial that enrolled women with locally advanced primary invasive breast cancer. All samples were scored at a single site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu (HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with RT-qPCR continuous gene expression values and "intrinsic" subtype assignment by the PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and proliferation were selected using quartile cut-points from the continuous RT-qPCR data across the PAM50 subtype assignments. Results: ESR1, PGR, and ERBB2 gene expression had high agreement with established binary IHC cut-points (area under the curve (AUC) ≥ 0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A and B) subtypes (92%), but only 75% of ER negative tumors were classified into the HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers as shown in a multivariate analysis. Conclusions: The standard immunohistochemical panel for breast cancer (ER, PR, and HER2) does not adequately identify the PAM50 gene expression subtypes. Although there is high agreement between biomarker scoring by protein immunohistochemistry and gene expression, the gene expression determinations for ESR1 and ERBB2 status was more prognostic.
    Full-text · Article · Oct 2012 · BMC Medical Genomics
  • Source
    • "(*) P-value # 0.01 (hypergeometric). (B) Using the same transition states in A, but comparing the expression of genes in a panel of 50 ERBB2+ (HER2+) breast cancers compared to a panel of 23 normal breast samples (Weigelt et al. 2005; Oh et al. 2006; Perreard et al. 2006; Herschkowitz et al. 2007, 2008; Hoadley et al. 2007; Mullins et al. 2007; Hennessy et al. 2009; Hu et al. 2009; Parker et al. 2009; Prat et al. 2010). Significantly more (red) or less (green) expressed genes are defined by a Wilcoxon rank sum test (P-value # 0.01) between the expression values of the two different panels. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.
    Full-text · Article · Dec 2011 · Genome Research
Show more