Crystal Structure of an Asymmetric Complex of Pyruvate Dehydrogenase Kinase 3 with Lipoyl Domain 2 and its Biological Implications

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine and Dentistry, Kaul Genetics Building, Birmingham, Al 35294, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 08/2007; 370(3):407-16. DOI: 10.1016/j.jmb.2007.04.083
Source: PubMed


A homodimer of pyruvate dehydrogenase kinase (PDHK) is an integral part of pyruvate dehydrogenase complex (PDC) to which it is anchored primarily through the inner lipoyl-bearing domains (L2) of transacetylase component. The catalytic cycle of PDHK and its translocation over the PDC surface is thought to be mediated by the "symmetric" and "asymmetric" modes, in which the PDHK dimer binds to two and one L2-domain(s), respectively. Whereas the structure of the symmetric PDHK/L2 complex was reported, the structural organization and functional role of the asymmetric complex remain obscure. Here, we report the crystal structure of the asymmetric PDHK3/L2 complex that reveals several functionally important features absent from the previous structures. First, the PDHK3 subunits have distinct conformations: one subunit exhibits "open" and the other "closed" configuration of the putative substrate-binding cleft. Second, access to the closed cleft is additionally restricted by local unwinding of the adjacent alpha-helix. Modeling indicates that the target peptide might gain access to the PDHK active center through the open but not through the closed cleft. Third, the ATP-binding loop in one PDHK3 subunit adopts an open conformation, implying that the nucleotide loading into the active site is mediated by the inactive "pre-insertion" binding mode. Altogether our data suggest that the asymmetric complex represents a physiological state in which binding of a single L2-domain activates one of the PDHK protomers while inactivating another. Thus, the L2-domains likely act not only as the structural anchors but also modulate the catalytic cycle of PDHK.

Download full-text


Available from: Yancho Devedjiev, Jun 23, 2015
  • Source
    • "The segment between helices α6 and α7 forms part of the active-site cleft of PDK1; therefore, the unwound conformation in this segment, as a result of DCA binding, may also decrease kinase activity by thwarting the binding of the E1p substrate to the kinase. In this context, the structure of an asymmetric PDK3-L2 complex harboring only one bound L2 domain has been recently reported (Devedjiev et al., 2007). In this structure, a corresponding unwound " loopingout " segment is present in the L2-bound subunit of the PDK3 dimer, resulting in narrowing of the active-site cleft by 6 Å in the same subunit. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1. This interaction results in inhibition of PDK1 and PDK3 activities by aborting kinase binding to the PDC scaffold. Paradoxically, AZD7545 at saturating concentrations robustly increases scaffold-free PDK3 activity, similar to the inner lipoyl domain. Good DCA density is present in the helix bundle in the N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity. Finally, radicicol inhibits kinase activity by binding directly to the ATP-binding pocket of PDK3, similar to Hsp90 and Topo VI from the same ATPase/kinase superfamily.
    Preview · Article · Sep 2007 · Structure
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate dehydrogenase phosphatase 1 (PDP1) catalyzes dephosphorylation of pyruvate dehydrogenase (E1) in the mammalian pyruvate dehydrogenase complex (PDC), whose activity is regulated by the phosphorylation-dephosphorylation cycle by the corresponding protein kinases (PDHKs) and phosphatases. The activity of PDP1 is greatly enhanced through Ca2+ -dependent binding of the catalytic subunit (PDP1c) to the L2 (inner lipoyl) domain of dihydrolipoyl acetyltransferase (E2), which is also integrated in PDC. Here, we report the crystal structure of the rat PDP1c at 1.8 A resolution. The structure reveals that PDP1 belongs to the PPM family of protein serine/threonine phosphatases, which, in spite of a low level of sequence identity, share the structural core consisting of the central beta-sandwich flanked on both sides by loops and alpha-helices. Consistent with the previous studies, two well-fixed magnesium ions are coordinated by five active site residues and five water molecules in the PDP1c catalytic center. Structural analysis indicates that, while the central portion of the PDP1c molecule is highly conserved among the members of the PPM protein family, a number of structural insertions and deletions located at the periphery of PDP1c likely define its functional specificity towards the PDC. One notable feature of PDP1c is a long insertion (residues 98-151) forming a unique hydrophobic pocket on the surface that likely accommodates the lipoyl moiety of the E2 domain in a fashion similar to that of PDHKs. The cavity, however, appears more open than in PDHK, suggesting that its closure may be required to achieve tight, specific binding of the lipoic acid. We propose a mechanism in which the closure of the lipoic acid binding site is triggered by the formation of the intermolecular (PDP1c/L2) Ca2+ binding site in a manner reminiscent of the Ca2+ -induced closure of the regulatory domain of troponin C.
    Preview · Article · Aug 2007 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of approximately 7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a Pi-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyl-lipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.
    No preview · Article · Mar 2008 · Biochemistry
Show more