An ultrasensitive high-throughput electrochemiluminescence immunoassay for the Cdc42-associated protein tyrosine kinase ACK1

Chemistry Research and Discovery, Amgen, South San Francisco, CA 94080, USA.
Analytical Biochemistry (Impact Factor: 2.22). 09/2007; 367(2):179-89. DOI: 10.1016/j.ab.2007.05.007
Source: PubMed


Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.

Download full-text


Available from: Frank Kayser

  • No preview · Chapter · Apr 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel electrogenerated chemiluminescence (ECL) biosensor using gold nanoparticles as signal transduction probes was described for the detection of kinase activity. The gold nanoparticles were specifically conjugated to the thiophosphate group after the phosphorylation process in the presence of adenosine 59-[c-thio] triphosphate (ATP-s) cosubstrate. Due to its good conductivity, large surface area, and excellent electroactivity to luminol oxidization, the gold nanoparticles extremely amplified the ECL signal of luminol, offering a highly sensitive ECL biosensor for kinase activity detection. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar, and lipid metabolism in the human body, was used as a model to confirm the proof-of-concept strategy. The as-proposed biosensor presented high sensitivity, low detection limit of 0.07 U mL(-1), wide linear range (from 0.07 to 32 U mL(-1)), and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC(50) of ellagic acid, a PKA inhibitor, was estimated, which was in agreement with those characterized with the conventional kinase assay. While nearly no ECL signal change can be observed in the presence of Tyrphostin AG1478, a tyrosine kinase inhibitor, but not PKA inhibitor, shows its excellent performance in kinase inhibitor screening. The simple and sensitive biosensor is promising in developing a high-through assay of in vitro kinase activity and inhibitor screening for clinic diagnostic and drug development.
    Full-text · Article · Oct 2010 · Analytical Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lck (p56(lck) or lymphocyte specific kinase) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T cell receptor (TCR)-mediated signaling, leading to normal T-cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. This review covers the patents, patent applications and associated publications for small molecule kinase inhibitors of Lck since 2005 and attempts to place them in context from a structural point of view. Readers will gain an overview of the structural classes and binding modes of Lck inhibitors, the major players in this area and an insight into the current state of the field. The search for a potent and orally active inhibitor of Lck has been an intense area of research for a number of years. Despite tremendous efforts, the identification of a highly selective and potent Lck inhibitor suitable for use as an immunosuppressive agent remains elusive.
    No preview · Article · Nov 2010 · Expert Opinion on Therapeutic Patents
Show more