Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus)

Structure and Motion Laboratory, The Royal Veterinary College, London, UK.
Journal of Anatomy (Impact Factor: 2.1). 10/2007; 211(3):313-24. DOI: 10.1111/j.1469-7580.2007.00762.x
Source: PubMed


Muscle moment arms were measured for major muscles of the pelvic limb of the ostrich (Struthio camelus) in order to assess specific functional behaviour and to apply this to locomotor performance. Pelvic limbs of six juvenile ostriches were used for this study. The tendon travel technique was used to measure moment arms of 21 muscles at the hip, knee, ankle and metatarsophalangeal joints throughout the ranges of motion observed during level running. Six of the 21 muscles measured were found to have moment arms that did not change with joint angle, whilst the remainder all demonstrated angle-dependent changes for at least one of the joints crossed. Moment arm lengths tended to be longest for the large proximal muscles, whilst the largest relative changes were found for the moment arms of the distal muscles. For muscles where moment arm varied with joint angle: all hip muscles were found to have increasing moment arms with extension of the joint, knee flexors were found to have moment arms that increased with extension, knee extensor moment arms were found to increase with flexion and ankle extensor moment arms increased with extension. The greatest relative changes were observed in the flexors of the metatarsophalangeal joint, for which a three-fold increase in moment arm was observed from flexion to full extension. Changes in muscle moment arm through the range of motion studied appear to optimize muscle function during stance phase, increasing the effective mechanical advantage of these muscles.

Download full-text


Available from: Alan M Wilson, Jul 03, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: At most joints, there is a redundancy of muscle function. For any given movement, there are a wide range of possible solutions to the problem of how force is shared among muscle synergists. A better understanding of how force is shared among muscle synergists can provide insight into the mechanics and control of movement. We examined force sharing in the gastrocnemius of wild turkeys (Meleagris gallopavo), using strain gauges bonded to bony tendons. Force was measured separately in the lateral (LG) and medial (MG) heads of the gastrocnemius, to evaluate force sharing. We also used inverse dynamics to determine the total force required during swing phase. To determine whether the pattern of force sharing varied depending on the mechanical task, we used running speed (1 to 3.5 m s(-1)) and limb loading (30 and 60 g added tarsometatarsal mass) to vary the force required at the intertarsal joint. We found that the distribution of force between these two heads varied depending on the phase of the stride cycle. During stance, force was shared in near equal amounts between the two heads and this distribution was unaffected by changes in running speed or limb load. During swing phase, however, there was no force sharing. Force was produced only in the lateral head, and this force was not significantly different from the total force required, as calculated from inverse dynamics. Thus, the LG produced all of the force required for limb extension during swing. This change in the pattern of force sharing between stance and swing supports the theory that force sharing between muscle synergists is task-dependent.
    No preview · Article · May 2008 · Journal of Experimental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history.
    Full-text · Article · Aug 2008 · Journal of Morphology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bipedal stance and gait of theropod dinosaurs evolved gradually along the lineage leading to birds and at some point(s), flight evolved. How and when did these changes occur? We review the evidence from neontology and paleontology, including pectoral and pelvic limb functional morphology, fossil footprints/trackways and biomechanical models and simulations. We emphasise that many false dichotomies or categories have been applied to theropod form and function, and sometimes, these impede research progress. For example, dichotomisation of locomotor function into 'non-avian' and 'avian' modes is only a conceptual crutch; the evidence supports a continuous transition. Simplification of pelvic limb function into cursorial/non-cursorial morphologies or flexed/columnar poses has outlived its utility. For the pectoral limbs, even the classic predatory strike vs. flight wing-stroke distinction and separation of theropods into non-flying and flying--or terrestrial and arboreal--categories may be missing important subtleties. Distinguishing locomotor function between taxa, even with quantitative approaches, will always be fraught with ambiguity, making it difficult to find real differences if that ambiguity is properly acknowledged. There must be an 'interpretive asymptote' for reconstructing dinosaur limb function that available methods and evidence cannot overcome. We may be close to that limit, but how far can it be stretched with improved methods and evidence, if at all? The way forward is a combination of techniques that emphasises integration of neontological and paleontological evidence and quantitative assessment of limb function cautiously applied with validated techniques and sensitivity analysis of unknown variables.
    Full-text · Article · Apr 2009 · The Science of Nature
Show more