Article

# Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density

Cornell Theory Center, Cornell University, Ithaca, New York 14853, USA.

The Journal of Chemical Physics (Impact Factor: 2.95). 07/2007; 126(24):244112. DOI: 10.1063/1.2746029 Source: PubMed

**ABSTRACT**

We construct improved quantum Monte Carlo estimators for the spherically and system-averaged electron pair density (i.e., the probability density of finding two electrons separated by a relative distance u), also known as the spherically averaged electron position intracule density I(u), using the general zero-variance zero-bias principle for observables, introduced by Assaraf and Caffarel. The calculation of I(u) is made vastly more efficient by replacing the average of the local delta-function operator by the average of a smooth nonlocal operator that has several orders of magnitude smaller variance. These new estimators also reduce the systematic error (or bias) of the intracule density due to the approximate trial wave function. Used in combination with the optimization of an increasing number of parameters in trial Jastrow-Slater wave functions, they allow one to obtain well converged correlated intracule densities for atoms and molecules. These ideas can be applied to calculating any pair-correlation function in classical or quantum Monte Carlo calculations.

Get notified about updates to this publication Follow publication |

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.

- [Show abstract] [Hide abstract]

**ABSTRACT:**The combination of continuum many-body quantum physics and Monte Carlo methods provide a powerful and well established approach to first principles calculations for large systems. Replacing the exact solution of the problem with a statistical estimate requires a measure of the random error in the estimate for it to be useful. Such a measure of confidence is usually provided by assuming the central limit theorem to hold true. In what follows it is demonstrated that, for the most popular implementation of the variational Monte Carlo method, the central limit theorem has limited validity, or is invalid and must be replaced by a generalized central limit theorem. Estimates of the total energy and the variance of the local energy are examined in detail, and shown to exhibit uncontrolled statistical errors through an explicit derivation of the distribution of the random error. Several examples are given of estimated quantities for which the central limit theorem is not valid. The approach used is generally applicable to characterizing the random error of estimates, and to quantum Monte Carlo methods beyond variational Monte Carlo. - [Show abstract] [Hide abstract]

**ABSTRACT:**We pursue the development and application of the recently introduced linear optimization method for determining the optimal linear and nonlinear parameters of Jastrow-Slater wave functions in a variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its first-order derivatives, making use of a strong zero-variance principle. We extend the method to optimize the exponents of the basis functions, simultaneously with all the other parameters, namely, the Jastrow, configuration state function, and orbital parameters. We show that the linear optimization method can be thought of as a so-called augmented Hessian approach, which helps explain the robustness of the method and permits us to extend it to minimize a linear combination of the energy and the energy variance. We apply the linear optimization method to obtain the complete ground-state potential energy curve of the C(2) molecule up to the dissociation limit and discuss size consistency and broken spin-symmetry issues in quantum Monte Carlo calculations. We perform calculations for the first-row atoms and homonuclear diatomic molecules with fully optimized Jastrow-Slater wave functions, and we demonstrate that molecular well depths can be obtained with near chemical accuracy quite systematically at the diffusion Monte Carlo level for these systems. - [Show abstract] [Hide abstract]

**ABSTRACT:**The correlation energy in density functional theory can be expressed exactly in terms of the change in the probability of finding two electrons at a given distance r(12) (intracule density) when the electron-electron interaction is multiplied by a real parameter lambda varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is (ideally) kept fixed by a suitable local one-body potential. While an accurate intracule density of the physical system can only be obtained from expensive wavefunction-based calculations, being able to construct good models starting from Kohn-Sham ingredients would highly improve the accuracy of density functional calculations. To this purpose, we investigate the intracule density in the lambda --> infinity limit of the adiabatic connection. This strong-interaction limit of density functional theory turns out to be, like the opposite non-interacting Kohn-Sham limit, mathematically simple and can be entirely constructed from the knowledge of the one-electron density. We develop here the theoretical framework and, using accurate correlated one-electron densities, we calculate the intracule densities in the strong interaction limit for few atoms. Comparison of our results with the corresponding Kohn-Sham and physical quantities provides useful hints for building approximate intracule densities along the adiabatic connection of density functional theory.