PTEN Expression Contributes to the Regulation of Muscle Protein Degradation in Diabetes

Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States
Diabetes (Impact Factor: 8.1). 11/2007; 56(10):2449-56. DOI: 10.2337/db06-1731
Source: PubMed


Conditions accelerating muscle proteolysis are frequently associated with defective phosphatidylinositol 3-kinase (PI3K)/Akt signaling and reduced PI3K-generated phosphatidylinositol 3,4,5-triphosphate (PIP(3)). We evaluated the control of muscle protein synthesis and degradation in mouse models of type 1 and 2 diabetes to determine whether defects besides PI3K/Akt activities affect muscle metabolism.
We evaluated the expression and activity of PTEN, the phosphatase converting PIP(3) to inactive phosphatidylinositol 4,5-bisphosphate, and studied how PTEN influences muscle protein in diabetic wild-type mice and in mice with partial deficiency of PTEN(+/-).
In acutely diabetic mice, muscle PTEN expression was decreased. It was increased by chronic diabetes or insulin resistance. In cultured C2C12 myotubes, acute suppression of PI3K activity led to decreased PTEN expression, while palmitic acid increased PTEN in myotubes in a p38-dependent fashion. To examine whether PTEN affects muscle protein turnover, we studied primary myotubes cultures from wild-type and PTEN(+/-) mice. The proteolysis induced by serum deprivation was suppressed in PTEN(+/-) cells. Moreover, the sizes of muscle fibers in PTEN(+/-) and wild-type mice were similar, but the increase in muscle proteolysis caused by acute diabetes was significantly suppressed by PTEN(+/-). This antiproteolytic response involved higher PIP(3) and p-Akt levels and a decrease in caspase-3-mediated actin cleavage and activation of the ubiquitin-proteasome system as signified by reduced induction of atrogin-1/MAFbx or MurF1 (muscle-specific RING finger protein 1).
Changes in PTEN expression participate in the regulation of muscle proteolytic pathways. A decrease in PTEN could be a compensatory mechanism to prevent muscle protein losses.

Download full-text


Available from: Jie Du, Feb 04, 2014
  • Source
    • "The mechanisms that upregulate PTEN are of significant importance in understanding why diabetic axons regenerate less well. In muscle and endothelial cells, upregulation of PTEN associated with diabetes has been linked to palmitic acid acting through p38 MAPK and ATF2 (Koistinen et al., 2003; Wang et al., 2006; Hu et al., 2007). Similarly, in this study, we observed a rise in p38 messenger RNA and phospho-p38 protein in diabetic sensory neurons. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a 'double hit' in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially applicable to other neurological conditions requiring specific forms of molecular knockdown, and also identify a unique target, PTEN, to treat diabetic neuroregenerative failure.
    Preview · Article · Feb 2014 · Brain
  • Source
    • "MTM (myotubularin myopathy) family factors are members of the growing class of dual-specificity phosphatases (DSPs) including PTEN, which can dephosphorylate the products of phosphoinositide 3-kinases (PI3K), and are negative regulators of the PI3K/Akt signaling pathways[1]. A potential function for PI3K and PTEN has been suggested in both angiogenic signaling[2,3] and various models of muscle defects[4]. And, dual-specific phosphatase-5 (Dusp-5) has been identified to play a functional role in vascular development through counteracting the function of Snrk-1, a serine threonine kinase in angioblast development[5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic morphogenesis of vascular and muscular systems is tightly coordinated, and a functional cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development has been revealed in zebrafish. Here, we attempt to explore the function of Mtmr8 in vasculature development parallel to its function in muscle development. During early stage of somitogenesis, mtmr8 expression was detected in both somitic mesodem and ventral mesoderm. Knockdown of mtmr8 by morpholino impairs arterial endothelial marker expression, and results in endothelial cell reduction and vasculogenesis defects, such as retardation in intersegmental vessel development and interruption of trunk dorsal aorta. Moreover, mtmr8 morphants show loss of arterial endothelial cell identity in dorsal aorta, which is effectively rescued by low concentration of PI3K inhibitor, and by over-expression of dnPKA mRNA or vegf mRNA. Interestingly, mtmr8 expression is up-regulated when zebrafish embryos are treated with specific inhibitor of Hedgehog pathway that abolishes arterial marker expression. These data indicate that Mtmr8 is essential for vasculature development in zebrafish embryos, and may play a role in arterial specification through repressing PI3K activity. It is suggested that Mtmr8 should represent a novel element of the Hedgehog/PI3K/VEGF signaling cascade that controls arterial specification.
    Full-text · Article · Sep 2010 · BMC Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences.
    Full-text · Article · Feb 2008 · PLoS ONE
Show more