Identification of diadenosine triphosphate in Brugia malayi by reverse phase high performance liquid chromatography, and MALDI mass spectrometry

Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
Journal of Chromatography B (Impact Factor: 2.73). 10/2007; 856(1-2):234-8. DOI: 10.1016/j.jchromb.2007.06.014
Source: PubMed


The presence of diadenosine oligophosphates (ApnA) in eukaryotic pathogens has been difficult technically to assess and thus is often overlooked. ApnA are a family of intercellular and intracellular signaling molecules and their biological activities differ relative to the number of phosphate moieties. The application of mass spectrometry to differentiate nucleotide phosphates has been limited by the high salt content in tissue extracts, enzymatic reactions or high performance liquid chromatography (HPLC) buffers, as well as the potential for sample loss when processing and desalting small biological samples. To address this problem a simple reverse phase HPLC (RP-HPLC) method using volatile organic buffers at low pH was developed to create elution profiles of adenosine and diadenosine phosphates. To test this method on a eukaryotic pathogen, small intravascular human filarial parasites (Brugia malayi) were extracted in phosphate buffered saline and a nucleotide phosphate profile was visualized by RP-HPLC. A major peak eluting at 10.4 min was analyzed directly by mass spectrometry and this confirmed the presence of significant quantities of diadenosine triphosphate, Ap3A. Application of this simplified RP-HPLC method will facilitate research on the normal and pathophysiological effects of ApnA particularly in situations when analysis of small biological samples is required.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of silica hydride-based stationary phases for the retention and analysis of nucleotides has been investigated. Both reversed-phase columns with a hydride surface underneath as well as those with an unmodified or a minimally modified hydride material were tested. With these systems, an aqueous normal-phase mode was used with high organic content mobile phases in combination with an additive to control pH for the retention of the hydrophilic nucleotides. Isocratic and gradient elution formats have been used to optimize separations for mixtures containing up to seven components. All conditions developed are suitable for methods that utilize mass spectrometry detection.
    Full-text · Article · Feb 2009 · Journal of Chromatography A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
    Full-text · Article · Mar 2009 · Acta Physiologica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the first 20 years that followed the purinergic signalling hypothesis in 1972, most scientists were sceptical about its validity, largely because ATP was so well established as an intracellular molecule involved in cell biochemistry and it seemed unlikely that such a ubiquitous molecule would act as an extracellular signalling molecule. However, after the receptors for ATP and adenosine were cloned and characterized in the early 1990s and ATP was established as a synaptic transmitter in the brain and sympathetic ganglia, the tide turned. More recently it has become clear that ATP is involved in long-term (trophic) signalling in cell proliferation, differentiation and death, in development and regeneration, as well as in short-term signalling in neurotransmission and secretion. Also, important papers have been published showing the molecular structure of P2X receptors in primitive animals like Amoeba and Schistosoma, as well as green algae. This has led to the recognition of the widespread nature of the purinergic signalling system in most cell types and to a rapid expansion of the field, including studies of the pathophysiology as well as physiology and exploration of the therapeutic potential of purinergic agents. In two books, Geoffrey Burnstock and Alexej Verkhratsky have aimed at drawing together the massive and diverse body of literature on purinergic signalling. The topic of this first book is purinergic signalling in the peripheral and central nervous systems and in the individual senses. In a second book the authors focus on purinergic signalling in non-excitable cells, including those of the airways, kidney, pancreas, endocrine glands and blood vessels. Diseases related to these systems are also considered. © Springer-Verlag Berlin Heidelberg 2012. All rights are reserved.
    Full-text · Book · Jun 2012
Show more