Article

A new set-up for skull fracture characterization

Division of Biomechanics and Engineering Design, K.U. Leuven, Celestijnenlaan 300C, 3001 Heverlee, Belgium.
Journal of Biomechanics (Impact Factor: 2.75). 02/2007; 40(15):3389-96. DOI: 10.1016/j.jbiomech.2007.05.018
Source: PubMed

ABSTRACT

Skull fracture is a frequently observed type of severe head injury. Historically, a variety of impact test set-ups and techniques have been used for investigating skull fracture. The most frequently used are the free-fall technique, the guided fall or drop tower set-up and the piston-driven impactor set-up. This document proposes a new type of set-up for cadaver head impact testing which combines the strengths of the most frequently used techniques and devices. The set-up consists of two pendulums, which allow for a 1 degree of freedom rotational motion. The first pendulum is the impactor and is used to strike the blow. The head is attached to the second pendulum using a polyester resin. Local skull deformation and impact force are measured with a sample frequency of 65 kHz. From these data, absorbed energy until skull fracture is calculated. A set-up evaluation consisting of 14 frontal skull and head impact tests shows an accurate measurement of both force and local skull deformation until fracture of the skull. Simplified mechanical models are used to analyse the different impacting techniques from literature as well as the new proposed set-up. It is concluded that the proposed test set-up is able to accurately calculate the energy absorbed by the skull until fracture with an uncertainty interval of 10%. Second, it is concluded that skull fracture caused by blunt impact occurs before any significant motion of the head. The two-pendulum set-up is the first head impact device to allow a well-controlled measurement environment without altering the skull stress distribution.

1 Follower
 · 
24 Reads
  • Source
    • "A number of studies have been performed using post-mortem human surrogate (PMHS) specimen to study the effect of blunt impact on pressures and displacements in the brain (Hardy et al., 1997, 2001), determine skull failure thresholds and characterize skull fracture patterns (Gurdjian et al., 1949; Melvin et al., 1969; Hodgson et al., 1970; Schneider and Nahum, 1972; Sarron et al., 2004; Hart, 2005; Delye et al., 2007; Verschueren et al., 2007; Raymond et al., 2009). Due to the complexity of these PMHS experiments along with the inherent likelihood of significant specimen variability, it would be prudent to have a skull surrogate which can represent the stress, vibration, and fracture characteristics of human cranial bone in a repeatable manner. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the three-layer (inner table-diplöe-outer table) architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three-layer surrogate cranial bone samples for three-point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures in pendulum impacts of intact human skulls, previously reported in the literature. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√ m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√ m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.
    Full-text · Article · Oct 2013 · Frontiers in Bioengineering and Biotechnology
  • [Show abstract] [Hide abstract]
    ABSTRACT: For illustration of the more precise variation of the plasma velocity of ; an electric wave with the frequency in a plasma column, the effect of the glass ; tube in which the discharge occurs and the effect of the Langmuir layer between ; plasma and glass tube were considered in the calculation of the wave broadening. ; (tr-auth);
    No preview · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to investigate whether an energy failure level applies to the skull fracture mechanics in unembalmed post-mortem human heads under dynamic frontal loading conditions. A double-pendulum model was used to conduct frontal impact tests on specimens from 18 unembalmed post-mortem human subjects. The specimens were isolated at the occipital condyle level, and pre-test computed tomography images were obtained. The specimens were rigidly attached to an aluminum pendulum in an upside down position and obtained a single degree of freedom, allowing motion in the plane of impact. A steel pendulum delivered the impact and was fitted with a flat-surfaced, cylindrical aluminum impactor, which distributed the load to a force sensor. The relative displacement between the two pendulums was used as a measure for the deformation of the specimen in the plane of impact. Three impact velocity conditions were created: low (3.60+/-0.23 m/sec), intermediate (5.21+/-0.04 m/sec), and high (6.95+/-0.04 m/sec) velocity. Computed tomography and dissection techniques were used to detect pathology. If no fracture was detected, repeated tests on the same specimen were performed with higher impact energy until fracture occurred. Peak force, displacement and energy variables were used to describe the biomechanics. Our data suggests the existence of an energy failure level in the range of 22-24 J for dynamic frontal loading of an intact unembalmed head, allowed to move with one degree of freedom. Further experiments, however, are necessary to confirm that this is a definitive energy criterion for skull fracture following impact.
    Full-text · Article · Nov 2007 · Journal of Neurotrauma
Show more