Structure basis of antigenic escape of a malaria vaccine candidate

Department of Epitope Mapping, Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 08/2007; 104(30):12488-93. DOI: 10.1073/pnas.0701464104
Source: PubMed


Antibodies against the malaria vaccine candidate apical membrane antigen-1 (AMA-1) can inhibit invasion of merozoites into RBC, but antigenic diversity can compromise vaccine efficacy. We hypothesize that polymorphic sites located within inhibitory epitopes function as antigenic escape residues (AER). By using an in vitro model of antigenic escape, the inhibitory contribution of 24 polymorphic sites of the 3D7 AMA-1 vaccine was determined. An AER cluster of 13 polymorphisms, located within domain 1, had the highest inhibitory contribution. Within this AER cluster, antibodies primarily targeted five polymorphic residues situated on an alpha-helical loop. A second important AER cluster was localized to domain 2. Domain 3 polymorphisms enhanced the inhibitory contribution of the domain 2 AER cluster. Importantly, the AER clusters could be split, such that chimeras containing domain 1 of FVO and domain 2 + 3 of 3D7 generated antisera that showed similarly high level inhibition of the two vaccine strains. Antibodies to this chimeric protein also inhibited unrelated strains of the parasite. Interstrain AER chimeras can be a way to incorporate inhibitory epitopes of two AMA-1 strains into a single protein. The AER clusters map in close proximity to conserved structural elements: the hydrophobic trough and the C-terminal proteolytic processing site. This finding led us to hypothesize that a conserved structural basis of antigenic escape from anti-AMA-1 exists. Genotyping high-impact AER may be useful for classifying AMA-1 strains into inhibition groups and to detect allelic effects of an AMA-1 vaccine in the field.

  • Source
    • "However, the FMP2.1/AS01 vaccine had significant allele-specific efficacy against clinical malaria caused by parasites identical to the vaccine strain with respect to specific amino acid positions previously identified as important determinants of allele-specific natural immunity in vitro [8], in field trials [9] and in response to vaccination with a monovalent vaccine [7] [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.
    Full-text · Article · Oct 2015 · Vaccine
  • Source
    • "Of 48 PfAMA1 polymorphic amino acid sites, 41 had a MAF, or combined MAF of ≥0.10 (Figure 4A). These ‘common’ sites included the highly polymorphic c1 and c1L cluster residues that have been previously associated with antigenic escape [79]. An additional PfAMA1 polymorphic residue at the C-terminal end (position 544) was also included in the haplotype analysis but was not mapped to the PfAMA1 model as it was located outside the region used to generate the crystal structure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background As Plasmodium falciparum and Plasmodium vivax co-exist in most malaria-endemic regions outside sub-Saharan Africa, malaria control strategies in these areas must target both species in order to succeed. Population genetic analyses can predict the effectiveness of interventions including vaccines, by providing insight into patterns of diversity and evolution. The aim of this study was to investigate the population genetics of leading malaria vaccine candidate AMA1 in sympatric P. falciparum and P. vivax populations of Papua New Guinea (PNG), an area of similarly high prevalence (Pf = 22.3 to 38.8%, Pv = 15.3 to 31.8%). Methods A total of 72 Pfama1 and 102 Pvama1 sequences were collected from two distinct areas, Madang and Wosera, on the highly endemic PNG north coast. Results Despite a greater number of polymorphic sites in the AMA1 genes of P. falciparum (Madang = 52; Wosera = 56) compared to P. vivax (Madang = 36, Wosera = 34), the number of AMA1 haplotypes, haplotype diversity (Hd) and recombination (R) was far lower for P. falciparum (Madang = 12, Wosera = 20; Hd ≤0.92, R ≤45.8) than for P. vivax (Madang = 50, Wosera = 38; Hd = 0.99, R = ≤70.9). Balancing selection was detected only within domain I of AMA1 for P. vivax, and in both domains I and III for P. falciparum. Conclusions Higher diversity in the genes encoding P. vivax AMA1 than in P. falciparum AMA1 in this highly endemic area has important implications for development of AMA1-based vaccines in PNG and beyond. These results also suggest a smaller effective population size of P. falciparum compared to P. vivax, a finding that warrants further investigation. Differing patterns of selection on the AMA1 genes indicate that critical antigenic sites may differ between the species, highlighting the need for independent investigations of these two leading vaccine candidates.
    Full-text · Article · Jun 2014 · Malaria Journal
  • Source
    • "Clusters of polymorphisms that might contribute to antibody escape have been identified on all three domains of AMA1 [20], although domain 1 appears to be the major target of inhibitory antibodies [21]. One cluster, known as C1-L, spans amino acids 196 to 207 of domain 1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape.
    Full-text · Article · Dec 2012 · PLoS ONE
Show more