Article

Plasminogen gene expression is regulated by nerve growth factor

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Studies have documented a requirement for an intact plasminogen (Plg) activation system in neurite outgrowth induced by nerve growth factor (NGF). Objective: In this study we addressed the effect of NGF on Plg synthesis in model NGF-responsive PC-12 cells. The effect of NGF on Plg gene expression was assessed using Western blotting, quantitative polymerase chain reaction, luciferase reporter assays, site directed mutagenesis, electrophoretic mobility shift assays and chromatin immunoprecipitation. NGF treatment increased Plg expression 3-fold and steady state levels of Plg mRNA were increased 6.82-fold. This effect also was observed in cortical neurons. PC-12 cells transfected with a luciferase reporter gene under the control of a 2400 bp fragment of the murine Plg promoter exhibited a 5-fold increase in luciferase activity following treatment with NGF. This response was dependent on Ras/ERK and PI3 K signaling because treatment with PD98059 together with wortmannin decreased promoter activity, in response to NGF, to the level exhibited by untreated cells. Furthermore, co-transfection with a dominant-negative mutant Ha-Ras completely blocked NGF-induced luciferase activity. In deletional and mutational studies we identified two Sp1 binding sites located between nucleotides -255 and -106 of the Plg promoter that were required for the full response of the Plg promoter to NGF. In chromatin immunoprecipitation assays the Sp1 transcription factor bound to the endogenous Plg promoter. These results suggest that Plg gene expression is up-regulated by neurotrophins that may provide a previously unrecognized mechanism for enhancing the effects of neurotrophins via the proteolytic activity of plasmin.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Additionally, a series of studies has documented a requirement for Plg activators in neurite outgrowth induced by nerve growth factor (NGF) (Pittman and DiBenedetto, 1995;Farias-Eisner et al., 2001). Furthermore, synthesis of several proteins of the fibrinolytic system, including the urokinase receptor, plasminogen activator inhibitor-1 and Plg, is regulated by NGF (Takahashi et al., 2000;Farias-Eisner et al., 2000;Gutierrez-Fernandez et al., 2007). Together, these studies strongly support the participation of Plg in neurologic functions. ...
... A series of studies has supported a requirement for an intact Plg activation system in neurite outgrowth induced by NGF (Pittman and DiBenedetto, 1995;Farias-Eisner et al., 2001;Jacovina et al., 2001). We have recently shown that Plg gene expression is induced by NGF in PC-12 cells (Gutierrez-Fernandez et al., 2007). Therefore, we examined the role of plasmin in NGF-dependent neurite outgrowth. ...
... These data support a requirement for plasmin activity for optimal neurite outgrowth. These data also suggest that Plg is synthesized by the cells and activated to plasmin, consistent with the synthesis of Plg and t-PA by the adrenal gland and by PC-12 cells (Zhang et al., 2002b;Kristensen et al., 1986;Parmer et al., 1997;Gutierrez-Fernandez et al., 2007). In addition, treatment with reagents that inhibit binding of Plg/plasmin to cells, including mAb51 or EACA, also reduced NGF-induced neuritogenesis by 38% and 71%, respectively, consistent with a requirement for the interaction of plasmin with the cell surface and/or the extracellular matrix. ...
Article
Full-text available
Proteins of the plasminogen activation system are broadly expressed throughout the nervous system, and key roles for these proteins in neuronal function have been demonstrated. Recent reports have established that plasminogen is synthesized in neuroendocrine tissues, making this protein and the proteolytic activity of the product of its activation, plasmin, available at sites separated anatomically from circulating, hepatocyte-derived plasminogen. Results with plasminogen-deficient humans and mice suggest a role for plasminogen in neuritogenesis. To elucidate the role of the plasminogen activation system in these processes, the function of plasminogen during neuritogenesis and neurite outgrowth was studied. It is shown here that plasminogen participates in neuritogenesis, as plasmin inhibitors reduced both neurite outgrowth and neurite length in PC-12 cells. The addition of exogenous plasminogen enhanced neurite outgrowth and neurite length in both PC-12 cells and primary cortical neurons. The proteolytic activity of plasmin was required, since mutation of the catalytic serine residue completely abolished the stimulatory activity. Furthermore, mutation of the lysine binding site within kringle 5 of the plasminogen molecule also reduced the neuritogenic activity of plasminogen. Additionally, we demonstrate that plasminogen specifically bound to laminin-1, the interaction resulted in increased plasminogen activation by tissue-type plasminogen activator, and was dependent on a functional lysine binding site within plasminogen kringle 5. Moreover, during NGF-induced neuritogenesis, laminin-1 was degraded, and this cleavage was catalyzed by plasmin. This study provides the first direct evidence that plasminogen participates in neurite outgrowth and also suggests that laminin-1 degradation by plasmin contributes to the process of neuritogenesis.
... We observed that the Cflar gene was down regulated in the IG + The protein encoded by the Plg gene is a secreted blood zymogen that is activated by proteolysis and converted to plasmin and angiostatin 16 . Plasmin dissolves fibrin in blood clots and is an important protease in many other cellular processes, whereas angiostatin inhibits angiogenesis 16 . ...
... We observed that the Cflar gene was down regulated in the IG + The protein encoded by the Plg gene is a secreted blood zymogen that is activated by proteolysis and converted to plasmin and angiostatin 16 . Plasmin dissolves fibrin in blood clots and is an important protease in many other cellular processes, whereas angiostatin inhibits angiogenesis 16 . In the present study, the Plg gene expression was upregulated in the IG (+8.22) and IRG (+6.69) groups, but IPC did not interfere with the expression of this gene. ...
Article
Full-text available
To investigate the effects of ischemic preconditioning (IPC) on the expression of pro and anti-apoptotic genes in rat endothelial cells undergoing enteric ischemia (I) and reperfusion (R). Thirty rats underwent clamping of the superior mesenteric vessels. Sham group (GS) laparotomy only; Ischemia (GI): intestinal ischemia (60 min); Ischemia and Reperfusion (GIR): ischemia (60 min) and reperfusion (120 min); Ischemia and intestinal ischemic preconditioning (GI + IPC) : 5 minutes of ischemia followed by 10 min of reperfusion before sustained ischemia (60 min) ischemia and reperfusion and IPC (GIR + IPC): 5 min ischemia followed by 10 min of reperfusion before sustained ischemia (60min) and reperfusion (120 min). Rat Endothelial Cell Biology (PCR array) to determine the expression of genes related to endothelial cell biology. Gene expression of pro-apoptotic markers (Casp1, Casp6, Cflar, Fas, and Pgl) was down regulated in GI+IPC and in GIR + IPC. In contrast, the expression of anti-apoptotic genes (Bcl2 and Naip2), was up-regulated in GI + IPC and in GIR + IPC. Ischemic preconditioning may protect against cell death caused by ischemia and reperfusion.
... Similarly, NGF can affect APP phosphorylation levels thereby dictating Aβ generation whereas APP can modulate NGF receptor trafficking and axonal transport thereby affecting NGF downstream signaling Triaca and Calissano, 2016;Xu et al., 2016). It has been speculated that during aging, alteration in NGF maturation and signaling pathways can lead to increased Aβ generation and reduced clearance (Gutierrez-Fernandez et al., 2007;Matrone et al., 2008;Triaca and Calissano, 2016;Canu et al., 2017). Apart from inducing death, increased Aβ levels can interact with several receptor types including p75 (Yaar et al., 1997;Chakravarthy et al., 2010;May et al., 2017), alpha-7-nicotinic (Khan et al., 2010;Ni et al., 2013;Liu et al., 2017), and metabotropic receptors (Joseph and Fisher, 2003;Janickova et al., 2013), leading to increased inflammation and signaling impairments (Conejero-Goldberg et al., 2008;Mura et al., 2012;Ardura-Fabregat et al., 2017). ...
Article
Full-text available
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
... In addition, plasminogen mRNA and protein were detected in the mouse in neurons -but not in glial cells-of the hippocampus, [8,37,38]. In vitro, cortical neurons subjected to nerve growth factor (NGF) application reveal an increased expression of the mRNA encoding for plasminogen [39]. Overall, while plasmin activity in the normal rat brain is low, it is possibly increased during axonal growth [40], after brain injury [41], or throughout regenerative events such as spine pruning [42]. ...
Article
The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions. Furthermore, we focus on the molecular mechanisms (some of them independent of plasmin generation and even of proteolysis) and target receptors responsible for these effects. The description of these mechanisms of action may help designing new therapeutic strategies targeting the expression, activity and molecular mediators of the PA system in neurological disorders involving neuroinflammatory processes. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
... This stimulation appears to be mediated by the activation of the MAPKs and the transcription factor C/EBPa [86,117,118]. Moreover, nerve growth factor (NGF) is also able to upregulate PLG expression through the activation of two Sp1 binding sites located between nucleotides at −255 and −106 of the gene promoter [119]. ...
Article
Full-text available
Transforming growth factor-beta (TGF- β ) is a pleiotropic factor, with several different roles in health and disease. TGF- β has been postulated as a dual factor in tumor progression, since it represses epithelial tumor development in early stages, whereas it stimulates tumor progression in advanced stages. During tumorigenesis, cancer cells acquire the capacity to migrate and invade surrounding tissues and to metastasize different organs. The urokinase-type plasminogen activator (uPA) system, comprising uPA, the uPA cell surface receptor, and plasminogen-plasmin, is involved in the proteolytic degradation of the extracellular matrix and regulates key cellular events by activating intracellular signal pathways, which together allow cancer cells to survive, thus, enhancing cell malignance during tumor progression. Due to their importance, uPA and its receptor are tightly transcriptionally regulated in normal development, but are deregulated in cancer, when their activity and expression are related to further development of cancer. TGF- β regulates uPA expression in cancer cells, while uPA, by plasminogen activation, may activate the secreted latent TGF- β , thus, producing a pernicious cycle which contributes to the enhancement of tumor progression. Here we review the specific roles and the interplay between TGF- β and uPA system in cancer cells and their implication in skin cancer.
... PLG gene expression is regulated by glucocorticoids, interleukin 6, nerve growth factor, and retinoic acid-related orphan receptor alpha [10][11][12][13]. Furthermore, epidemiological studies revealed an increase of PLG plasma levels in women taking oral contraceptives and in postmenopausal women receiving hormone replacement therapy, containing estrogen alone or in combination with gestagens [14,15]. ...
Article
Postmenopausal women treated with estrogen hormone replacement therapy and female patients with hypoplasminogenemia receiving oral contraceptives show increasing plasminogen (PLG) concentrations. The elevated PLG levels are in contrast to the estrogen dependent decline of lipoptrotein(a) [Lp(a)], whose main protein component apolipoprotein(a) [APO(a)] is highly homologous to PLG in protein and gene structure and is also located in its immediate vicinity on chromosome 6q26. The intergenic region between both genes comprises several transcription-regulatory regions with enhancer sequences that increase the basal activity of the PLG core promoter. Using luciferase reporter assays we demonstrate that the minimal PLG promoter is insensitive to estrogen. However, an estrogen response element located 11.5 kb upstream of the PLG transcription start site is able to convey a dramatic estrogen-dependent elevation of PLG-minimal promoter driven reporter gene expression. In contrast, the activating effect of two additional enhancer elements, among them an DNase I hypersensitivity region that has been shown to regulate the APO(a) minimal promoter activity, is abrogated by estrogen. Thus, the identified estrogen-responsive elements provide a gene and tissue specific framework by which PLG expression is regulated and whose activity is orchestrated by yet unknown accessory factors.
... This stimulation appears to be mediated by the activation of the mitogen-activated protein kinases (MAPK) and the transcription factor C/EBP [15,16]. Neurotrophins, as the nerve growth factor (NGF), are also able to up-regulate PLG expression through the activation of two Sp1 binding sites located between nucleotides -255 and -106 of the gene promoter [17]. ...
Article
Full-text available
The urokinase plasminogen activator (uPA) system (uPAS) consists of the uPA, its cognate receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1) and 2 (PAI-2). The uPA converts the proenzyme plasminogen in the serine protease plasmin, involved in a number of physiopathological processes requiring basement membrane (BM) and/or extracellular matrix (ECM) remodelling, including tumor progression and metastasis. Data accumulated over the past years have made increasingly clear that the uPAS has a multifunctional task in the neoplastic evolution, affecting tumor angiogenesis, malignant cell proliferation, adhesion and migration, intravasation and growth at the metastatic site. In agreement with their role in cancer progression and metastasis, an increased expression of uPA, uPAR, and PAI-1 has been documented in several malignant tumors, and a positive correlation between the levels of one or more uPAS members and a poor prognosis has been frequently reported. This is particularly evident in breast cancer, for which uPA has been demonstrated to be the most potent independent prognostic factor described to date. The involvement of the uPAS in cancer progression identifies its components as suitable targets for anti-cancer therapy. Several therapeutical approaches aimed at inhibiting the uPA/uPAR functions have been shown to possess anti-tumor effects in xenograft models, including selective inhibitors of uPA activity, antagonist peptides, monoclonal antibodies able to prevent uPA binding to uPAR and gene therapy techniques silencing uPA/uPAR expression. All these strategies, however, although promising, need definitive confirmation in humans as, up to now, only few uPA inhibitors entered clinical trial.
... This enzyme derives from the proteolytic cleavage of plasminogen by the tissue plasminogen activator (tPA) (207). A recent study demonstrated that NTs upregulate plasminogen gene expression through two Sp1 (Specificity protein 1) binding site on plasminogen promoter, thus creating a positive feedback for the maturation of NTs (97). ...
Article
Full-text available
Neurotrophins were christened in consideration of their actions on the nervous system and, for a long time, they were the exclusive interest of neuroscientists. However, more recently, this family of proteins has been shown to possess essential cardiovascular functions. During cardiovascular development, neurotrophins and their receptors are essential factors in the formation of the heart and critical regulator of vascular development. Postnatally, neurotrophins control the survival of endothelial cells, vascular smooth muscle cells, and cardiomyocytes and regulate angiogenesis and vasculogenesis, by autocrine and paracrine mechanisms. Recent studies suggest the capacity of neurotrophins, via their tropomyosin-kinase receptors, to promote therapeutic neovascularization in animal models of hindlimb ischemia. Conversely, the neurotrophin low-affinity p75(NTR) receptor induces apoptosis of endothelial cells and vascular smooth muscle cells and impairs angiogenesis. Finally, nerve growth factor looks particularly promising in treating microvascular complications of diabetes or reducing cardiomyocyte apoptosis in the infarcted heart. These seminal discoveries have fuelled basic and translational research and thus opened a new field of investigation in cardiovascular medicine and therapeutics. Here, we review recent progress on the molecular signaling and roles played by neurotrophins in cardiovascular development, function, and pathology, and we discuss therapeutic potential of strategies based on neurotrophin manipulation.
Article
Recent studies suggest a crucial role for plasminogen activator inhibitor-1 (PAI-1) in mediating stress-induced hypercoagulability and thrombosis. However, the mechanisms by which PAI-1 is released by stress are not well-delineated. Here, we examined catecholaminergic neurosecretory cells for expression, trafficking, and release of PAI-1. PAI-1 was prominently expressed in PC12 pheochromocytoma cells and bovine adrenomedullary chromaffin cells as detected by Northern blotting, Western blotting, and specific PAI-1 ELISA. Sucrose gradient fractionation studies and immunoelectron microscopy demonstrated localization of PAI-1 to catecholamine storage vesicles. Secretogogue stimulation resulted in corelease of PAI-1 with catecholamines. Parallel increases in plasma PAI-1 and catecholamines were observed in response to acute sympathoadrenal activation by restraint stress in mice in vivo. Reverse fibrin zymography demonstrated free PAI-1 in cellular releasates. Detection of high molecular weight complexes by Western blotting, consistent with PAI-1 complexed with t-PA, as well as bands consistent with cleaved PAI-1, suggested that active PAI-1 was present. Modulation of PAI-1 levels by incubating PC12 cells with anti-PAI-1 IgG caused a marked decrease in nicotine-mediated catecholamine release. In summary, PAI-1 is expressed in chromaffin cells, sorted into the regulated pathway of secretion (into catecholamine storage vesicles), and coreleased, by exocytosis, with catecholamines in response to secretogogues.
Article
Plasmin role in transforming growth factor-beta (TGF-beta)-responsive gene regulation remains to be elucidated. Also, plasmin action on co-repressor Ski-related novel protein N (SnoN) and differential activation of matrix metalloproteinases (MMPs) are unknown. Thus, the role of plasmin on profibrogenic molecule expression, SnoN transcriptional kinetics and gelatinase activation was investigated. Hepatic stellate cells (HSC) were transduced with adenovirus-mediated human urokinase plasminogen activator (Ad-huPA) (4 x 10(9) viral particles/ml). Overexpression of urokinase plasminogen activator and therefore of plasmin, was blocked by tranexamic acid (TA) in transduced HSC. Gene expression was monitored by reverse transcriptase polymerase chain reaction. HSC-free supernatants were used to evaluate MMP-2 and MMP-9 by zymography. SnoN, TGF-beta and tissue inhibitor of metalloproteinase (TIMP)-1 were analysed by Western blot. Plasmin and SnoN expression kinetics were evaluated in bile duct-ligated (BDL) rats. Plasmin overexpression in Ad-huPA-transduced HSC significantly decreased gene expression of profibrogenic molecules [alpha1(I)collagen 66%, TIMP-1 59%, alpha-smooth muscle actin 90% and TGF-beta 55%]. Interestingly, both SnoN gene and protein expression increased prominently. Plasmin inhibition by TA upregulated the profibrogenic genes, which respond to TGF-beta-intracellular signalling. In contrast, SnoN mRNA and protein dropped importantly. Plasmin-activated MMP-9 and MMP-2 in HSC supernatants. Taken together, these findings indicate that MMP-9 activation is totally plasmin dependent. SnoN levels significantly decreased in cholestatic-BDL rats (82%) as compared with control animals. Interestingly, hepatic plasmin levels dropped 46% in BDL rats as compared with control. Plasmin plays a key role in regulating TGF-beta-responding genes. In particular, regulation of TGF-beta-co-repressor (SnoN) is greatly affected, which suggests SnoN as a cardinal player in cholestasis-induced fibrogenesis.
Article
Full-text available
Mice lacking the serine protease tissue plasminogen activator (tPA) are resistant to excitotoxin-mediated hippocampal neuronal degeneration. We have used genetic and cellular analyses to study the role of tPA in neuronal cell death. Mice deficient for the zymogen plasminogen, a known substrate for tPA, are also resistant to excitotoxins, implicating an extracellular proteolytic cascade in degeneration. The two known components of this cascade, tPA and plasminogen, are both synthesized in the mouse hippocampus. tPA mRNA and protein are present in neurons and microglia, whereas plasminogen mRNA and protein are found exclusively in neurons. tPA-deficient mice exhibit attenuated microglial activation as a reaction to neuronal injury. In contrast, the microglial response of plasminogen-deficient mice was comparable to that of wild-type mice, suggesting a tPA-mediated, plasminogen-independent pathway for activation of microglia. Infusion of inhibitors of the extracellular tPA/plasmin proteolytic cascade into the hippocampus protects neurons against excitotoxic injury, suggesting a novel strategy for intervening in neuronal degeneration.
Article
Full-text available
PD 098059 has been shown previously to inhibit the dephosphorylated form of mitogen-activated protein kinase kinase-1 (MAPKK1) and a mutant MAPKK1(S217E,S221E), which has low levels of constitutive activity (Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7686-7689). Here we report that PD 098059 does not inhibit Raf-activated MAPKK1 but that it prevents the activation of MAPKK1 by Raf or MEK kinase in vitro at concentrations (IC = 2-7 μM) similar to those concentrations that inhibit dephosphorylated MAPKK1 or MAPKK1(S217E,S221E). PD 098059 inhibited the activation of MAPKK2 by Raf with a much higher IC value (50 μM) and did not inhibit the phosphorylation of other Raf or MEK kinase substrates, indicating that it exerts its effect by binding to the inactive form of MAPKK1. PD 098059 also acts as a specific inhibitor of the activation of MAPKK in Swiss 3T3 cells, suppressing by 80-90% its activation by a variety of agonists. The high degree of specificity of PD 098059 in vitro and in vivo is indicated by its failure to inhibit 18 protein Ser/Thr kinases (including two other MAPKK homologues) in vitro by its failure to inhibit the in vivo activation of MAPKK and MAP kinase homologues that participate in stress and interleukin-1-stimulated kinase cascades in KB and PC12 cells, and by lack of inhibition of the activation of p70 S6 kinase by insulin or epidermal growth factor in Swiss 3T3 cells. PD 098059 (50 μM) inhibited the activation of p42 and isoforms of MAP kinase-activated protein kinase-1 in Swiss 3T3 cells, but the extent of inhibition depended on how potently c-Raf and MAPKK were activated by any particular agonist and demonstrated the enormous amplification potential of this kinase cascade. PD 098059 not only failed to inhibit the activation of Raf by platelet-derived growth factor, serum, insulin, and phorbol esters in Swiss 3T3 cells but actually enhanced Raf activity. The rate of activation of Raf by platelet-derived growth factor was increased 3-fold, and the subsequent inactivation that occurred after 10 min was prevented. These results indicate that the activation of Raf is suppressed and that its inactivation is accelerated by a downstream component(s) of the MAP kinase pathway.
Article
Full-text available
The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes.
Article
Full-text available
A single cell clonal line which responds reversibly to nerve growth factor (NGF) has been established from a transplantable rat adrenal pheochromocytoma. This line, designated PC12, has a homogeneous and near-diploid chromosome number of 40. By 1 week's exposure to NGF, PC12 cells cease to multiply and begin to extend branching varicose processes similar to those produced by sympathetic neurons in primary cell culture. By several weeks of exposure to NGF, the PC12 processes reach 500-1000 mum in length. Removal of NGF is followed by degeneration of processes within 24 hr and by resumption of cell multiplication within 72 hr. PC12 cells grown with or without NGF contain dense core chromaffin-like granules up to 350 nm in diameter. The NGF-treated cells also contain small vesicles which accumulate in process varicosities and endings. PC12 cells synthesize and store the catecholamine neurotransmitters dopamine and norepinephrine. The levels (per mg of protein) of catecholamines and of the their synthetic enzymes in PC12 cells are comparable to or higher than those found in rat adrenals. NGF-treatment of PC12 cells results in no change in the levels of catecholamines or of their synthetic enzymes when expressed on a per cell basis, but does result in a 4- to 6-fold decrease in levels when expressed on a per mg of protein basis. PC12 cells do not synthesize epinephrine and cannot be induced to do so by treatment with dexamethasone. The PC12 cell line should be a useful model system for neurobiological and neurochemical studies.
Article
Full-text available
Plasminogen was prepared from human plasma by affinity chromatography on L-lysine-substituted Sepharose. Thirty milligrams of plasminogen, with a specific activity of 100 caseinolytic units (Committee on Thrombolytic Agents) per milligram of nitrogen, were obtained from 340 milliliters of plasma. This corresponds to over 200-fold purification from plasma. Disc-gel electrophoresis at pH 8.3 indicated seven distinct bands, all of which contained activity.
Article
Full-text available
PC12 cells were stably transfected with expression vectors containing rat tissue plasminogen activator (tPA) under control of either a cytomegalovirus or rous sarcoma virus promoter. Cell lines were characterized using protease assays, ELISAs, immunoblots, northern blots, and Southern blots. Control PC12 cells or cells containing vectors alone released about 1 pg tPA/cell/24 h, whereas cells stably transfected with a tPA cDNA released 2-5 pg tPA/cell/24 h. A strong correlation existed between the amount of tPA released and the ability of cells to degrade extracellular matrix. Experiments with protease inhibitors and antibodies against tPA and plasminogen indicated that degradation of matrix involved tPA-generated plasmin and that the amount of matrix degraded was dependent on the amount of tPA released. Cells expressing high levels of tPA migrated on a three-dimensional matrix about twice as fast as control cells and regenerated neurites within three-dimensional gels of Matrigel to a greater extent than control cells. Antibodies that inhibited tPA and plasminogen decreased migration and neurite regeneration, indicating that tPA was involved in both events, PC12 cells overexpressing tPA should provide a useful model system for investigating neural functions of tPA including its role in migration and regeneration.
Article
Full-text available
Nerve growth factor (NGF) binds to two cell surface receptors, p140trk and p75NGFR, which are both expressed in responsive sensory, sympathetic, and basal forebrain cholinergic neurons. While p140trk belongs to the family of receptor tyrosine kinases, p75NGFR is a member of the TNF/Fas/CD40/CD30 family of receptors. Current views of neurotrophin receptor function have tended to interpret p140trk as the high affinity NGF-binding site. To assess if the binding of NGF to p140trk was distinguishable from binding to high affinity sites on neuronal cells, PC12 cell sublines were generated which expressed p140trk alone, or coexpressed both p140trk and p75NGFR. Kinetic analysis of 125I-NGF binding indicates that it has an unusually slow rate of association with p140trk (k + 1 = 8 x 10(5) M-1 s-1). When both p140trk and p75NGFR receptors are coexpressed, the rate of association of NGF is increased 25-fold to produce a higher affinity binding site. An increase in the rate of internalization was also observed. Since high affinity binding and internalization are believed to be prerequisite for the biological activities of NGF, these results suggest that the biological effects by NGF are derived from a novel kinetic binding site that requires the expression of both receptors. The implications of these results with respect to multisubunit polypeptide receptors are discussed.
Article
Full-text available
Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.
Article
Full-text available
Mice lacking the serine protease tissue plasminogen activator (tPA) are resistant to excitotoxin-mediated hippocampal neuronal degeneration. We have used genetic and cellular analyses to study the role of tPA in neuronal cell death. Mice deficient for the zymogen plasminogen, a known substrate for tPA, are also resistant to excitotoxins, implicating an extracellular proteolytic cascade in degeneration. The two known components of this cascade, tPA and plasminogen, are both synthesized in the mouse hippocampus. tPA mRNA and protein are present in neurons and microglia, whereas plasminogen mRNA and protein are found exclusively in neurons. tPA-deficient mice exhibit attenuated microglial activation as a reaction to neuronal injury. In contrast, the microglial response of plasminogen-deficient mice was comparable to that of wild-type mice, suggesting a tPA-mediated, plasminogen-independent pathway for activation of microglia. Infusion of inhibitors of the extracellular tPA/plasmin proteolytic cascade into the hippocampus protects neurons against excitotoxic injury, suggesting a novel strategy for intervening in neuronal degeneration.
Article
Full-text available
Tissue-type plasminogen activator (t-PA) is a serine protease that plays a central role in the regulation of intravascular thrombolysis. The acute release of t-PA in vivo is induced by a variety of stimuli including exercise, trauma, and neural stimulation. These types of stimuli also result in sympathoadrenal activation and exocytotic release of amines and proteins from catecholamine storage vesicles of the adrenal medulla and sympathetic neurons. Therefore, we tested the hypothesis that t-PA is packaged in and released directly from catecholamine storage vesicles, using several chromaffin cell sources including the rat pheochromocytoma PC-12 chromaffin cell line, primary cultures of bovine adrenal chromaffin cells, and human pheochromocytoma. t-PA was expressed in chromaffin cells as detected by Northern blotting, immunoprecipitation of [35S]Met-labeled t-PA, and specific t-PA enzyme-linked immunosorbent assay of cell homogenates. In addition, chromaffin cell t-PA was enzymatically active by fibrin zymography. To explore the subcellular localization of the expressed t-PA, PC-12 cells were labeled with [3H]norepinephrine, homogenized, and subjected to sucrose density fractionation. [3H]Norepinephrine and t-PA antigen were co-localized to the same subcellular fraction with a major peak at 1.4 M sucrose, consistent with the buoyant density of catecholamine storage vesicles. In addition, catecholamine storage vesicle lysates isolated from human pheochromocytoma tumors were enriched approximately 30-fold in t-PA antigen, compared with tumor homogenate. Furthermore, exposure of PC-12 cells or primary bovine adrenal chromaffin cells to chromaffin cell secretagogues (60 microM nicotine, 55 mM KCl, or 2 mM BaCl2) resulted in co-release of t-PA in parallel with catecholamines. These data demonstrate that t-PA is expressed in chromaffin cells, is sorted into the regulated pathway of secretion, and is co-released with catecholamines by chromaffin cell stimulation. Catecholamine storage vesicles may be an important reservoir and sympathoadrenal activation an important physiologic mechanism for the rapid release of t-PA. In addition, expression of t-PA by chromaffin cells suggests a role for this protease in the proteolytic processing of chromaffin cell proteins.
Article
Full-text available
Ligneous conjunctivitis is a rare form of chronic pseudomembranous conjunctivitis that is associated with systemic membranous pathological changes. A probable link between plasminogen and ligneous conjunctivitis has been indicated by the recent diagnoses of plasminogen deficiency in five patients suffering from ligneous conjunctivitis. The current study reports that plasminogen-deficient mice develop conjunctival lesions indistinguishable from human ligneous conjunctivitis in both appearance and histology. Both human and mouse lesions contain acellular material rich in fibrin, and aberrant or disrupted epithelium. The incidence of lesion development in mice increases with age and is strongly influenced by genetic background. Interestingly, ligneous conjunctivitis was not observed in plasminogen-deficient mice simultaneously lacking fibrinogen. This study provides direct evidence that plasminogen deficiency is one cause of ligneous conjunctivitis and suggests that plasminogen-deficient mice may be an excellent model for the development of therapeutic strategies for the treatment of this debilitating disease.
Article
Full-text available
The two MAP kinases JNK and ERK direct distinct cellular activities even though they share a number of common substrates, including several transcription factors. Here we have compared JNK and ERK signalling during PC12 cell differentiation and investigated how activation of c-Jun by the MAPKs contributes to this cellular response. Exposure to nerve growth factor, or expression of constitutively active MEK1-two treatments which cause differentiation of PC12 cells into a neuronal phenotype-result in activation of ERK-type MAP kinases and phosphorylation of c-Jun on several sites including Ser63 and Ser73. Constitutively activated c-Jun, which mimics the MAPK-phosphorylated form of the protein, can induce neuronal differentiation of PC12 cells independently of upstream signals. Conversely, expression of dominant-negative c-JunbZIP prevents neurite outgrowth induced by activated MEK1. Activation of MEKK1, which stimulates the JNK pathway, is not sufficient for PC12 cell differentiation but can induce apoptosis. However, neurite outgrowth is triggered when c-Jun is co-expressed with activated MEKK1 or SEK1. Consistently, MEK-induced ERK activation in PC12 cells induces c-Jun expression, while JNK signalling does not. Therefore, dual input of expression and phosphorylation of c-Jun provided by the ERK pathway is required to direct neuronal differentiation in PC12 cells.
Article
Full-text available
Ligneous conjunctivitis is a rare disease characterized by acute or chronic recurrent conjunctivitis in which the conjunctival membranes acquire a wood-like consistency, due primarily to deposits of fibrin.1,2 Corneal involvement and chronic obstruction of the eye may lead to blindness. The disease is frequently associated with nasopharyngitis, tracheobronchial obstruction, otitis media, vulvovaginitis, and defective wound healing.2–9 Pseudomembranous conjunctivitis was first described in 1847 by Bouisson,10 and the term “conjunctivitis lignosa” was introduced by Borel in 1933.11 More than 100 cases have been reported in the literature, but no satisfactory treatment has yet been found. The results of therapy . . .
Article
Full-text available
Our previous studies have shown that treatment of PC12 cells with nerve growth factor (NGF) causes a profound down-regulation of the epidermal growth factor receptor (EGFR) mRNA and protein. Further, the NGF-induced down-regulation of the EGFR is under transcriptional control. To elucidate the molecular mechanism of this down-regulation we have cloned a 2.7-kilobase sequence from the promoter region of the rat EGFR from a rat P1 library. Six transcriptional start sites were identified by 5'-rapid amplification of cDNA ends and primer extension. Sequence analysis showed a 62% overall homology with the human EGFR promoter region. To investigate its transcription, 1.1 kilobases of the 5'-flanking sequence were fused to a luciferase reporter gene. This sequence exhibited functional promoter activity in transient transfection experiments with PC12, C6, and CV-1 cells. Treatment of PC12 cells with NGF inhibited promoter activity. By transfection of promoter deletion constructs, a silencer element was found between nucleotides -260 and -181, and TCC repeat sequences appeared to be at least partially responsible for the down-regulation of the EGFR by NGF. Supportive evidence for the relevance of this sequence was obtained from gel mobility shift assays and by transfection of TCC mutation constructs. Our results demonstrate that TCC repeat sequences are required for the down-regulation of rat EGFR by NGF in PC12 cells and may lead to the identification of the NGF-responsive transcription factors.
Article
Full-text available
Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell-produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.
Article
Full-text available
Chromogranin A (CgA) is the major soluble protein in the core of catecholamine-storage vesicles and is also distributed widely in secretory vesicles throughout the neuroendocrine system. CgA contains the sequences for peptides that modulate catecholamine release, but the proteases responsible for the release of these bioactive peptides from CgA have not been established. We show here that the major fibrinolytic enzyme, plasmin, can cleave CgA to form a series of large fragments as well as small trichloroacetic acid-soluble peptides. Peptides generated by plasmin-mediated cleavage of CgA significantly inhibited nicotinic cholinergic stimulation of catecholamine release from PC12 cells and primary bovine adrenal chromaffin cells. We also show that the zymogen, plasminogen, as well as tissue plasminogen activator bind saturably and with high capacity to catecholaminergic (PC12) cells. Occupancy of cell surface binding sites promoted the cleavage of CgA by plasmin. Positive and negative modulation of the local cellular fibrinolytic system resulted in substantial alterations in catecholamine release. These results suggest that catecholaminergic cells express binding sites that localize fibrinolytic molecules on their surfaces to promote plasminogen activation and proteolytic processing of CgA in the environment into which CgA is secreted to generate peptides which may regulate neuroendocrine secretion. Interactions between CgA and plasmin(ogen) define a previously unrecognized autocrine/paracrine system that may have a dramatic impact upon catecholamine secretion.
Article
Full-text available
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.
Article
Full-text available
The plasminogen receptors responsible for enhancing cell surface-dependent plasminogen activation expose COOH-terminal lysines on the cell surface and are sensitive to proteolysis by carboxypeptidase B (CpB). We treated U937 cells with CpB, then subjected membrane fractions to two-dimensional gel electrophoresis followed by ligand blotting with125I-plasminogen. A 54-kDa protein lost the ability to bind 125I-plasminogen after treatment of intact cells and was purified by two-dimensional gel electrophoresis and then sequenced by mass spectrometry. Two separate amino acid sequences were obtained and were identical to sequences contained within human and rat TIP49a. The cDNA for the 54-kDa protein matched the human TIP49a sequence, and encoded a COOH-terminal lysine, consistent with susceptibility to CpB. Antibodies against rat TIP49a recognized the plasminogen-binding protein on two-dimensional Western blots of U937 cell membranes. Human 125I-Glu-plasminogen bound specifically to TIP49a protein, and binding was inhibited by ε-aminocaproic acid. A single class of binding sites was detected, and a K d of 0.57 ± 0.14 μm was determined. TIP49a enhanced plasminogen activation 8-fold compared with the BSA control, and this was equivalent to the enhancement mediated by plasmin-treated fibrinogen. These results suggest that TIP49a is a previously unrecognized plasminogen-binding protein on the U937 cell surface.
Article
Full-text available
During neuronal differentiation, an exquisitely controlled program of signal transduction events takes place, leading to the temporally and spatially regulated expression of genes associated with the differentiated phenotype. A critical class of genes involved in this phenomenon is that made up of genes encoding neurotransmitter-gated ion channels that play a central role in signal generation and propagation within the nervous system. We used the well established PC12 cell line to investigate the molecular details underlying the expression of the neuronal nicotinic acetylcholine receptor class of ion channels. Neuronal differentiation of PC12 cells can be induced by nerve growth factor, leading to an increase in neuronal nicotinic acetylcholine receptor gene expression. Nerve growth factor initiates several signal transduction cascades. Here, we show that the Ras-dependent mitogen-activated protein kinase and phosphoinositide 3-kinase pathways are critical for the nerve growth factor-mediated increase in the transcriptional activity of a neuronal nicotinic acetylcholine receptor gene promoter. In addition, we show that a component of the Ras-dependent mitogen-activated protein kinase pathway, nerve growth factor-inducible c-Jun, exerts its effects on receptor gene promoter activity most likely through protein-protein interactions with Sp1. Finally, we demonstrate that the target for nerve growth factor signaling is an Sp1-binding site within the neuronal nicotinic acetylcholine receptor gene promoter.
Article
Ligneous conjunctivitis is a rare form of chronic pseudomembranous conjunctivitis that is associated with systemic membranous pathological changes. A probable link between plasminogen and ligneous conjunctivitis has been indicated by the recent diagnoses of plasminogen deficiency in five patients suffering from ligneous conjunctivitis. The current study reports that plasminogen-deficient mice develop conjunctival lesions indistinguishable from human ligneous conjunctivitis in both appearance and histology. Both human and mouse lesions contain acellular material rich in fibrin, and aberrant or disrupted epithelium. The incidence of lesion development in mice increases with age and is strongly influenced by genetic background. Interestingly, ligneous conjunctivitis was not observed in plasminogen-deficient mice simultaneously lacking fibrinogen. This study provides direct evidence that plasminogen deficiency is one cause of ligneous conjunctivitis and suggests that plasminogen-deficient mice may be an excellent model for the development of therapeutic strategies for the treatment of this debilitating disease.
Article
We previously identified the urokinase plasminogen activator receptor (UPAR) as a gene induced by nerve growth factor (NGF), but not by epidermal growth factor (EGF), in PC12 cells (Farias-Eisner et al. [2000] J. Neurosci. 20:230–239). Antisense oligonucletides for the UPAR mRNA or an antibody directed against UPAR protein, added simultaneously with NGF, block NGF-induced morphological and biochemical differentiation of PC12 cells. In this report, we show that anti-UPAR antibody blocks morphological differentiation and the expression of two NGF-specific secondary response genes, collagenase-1 and transin, in PC12 cells only during the first 2 hr following NGF exposure. These data suggest that induced UPAR expression is required only over a short period of time following exposure to NGF for the differentiation program in PC12 cells to proceed. For two models of “primed” PC12 cells, we found that UPAR expression and function are not required for NGF-induced differentiation. UPAR and the secondary response genes collagenase-1 and transin are not induced in “primed” PC12 cells in response to NGF, and anti-UPAR antibody does not block morphological differentiation in these cells. Our data suggests that UPAR is required only transiently during the “priming” of PC12 cells in NGF-induced PC12 cell differentiation. J. Neurosci. Res. 63:341–346, 2001. © 2001 Wiley-Liss, Inc.
Article
The four mammalian neurotrophins — NGF, BDNF, NT-3 and NT-4 — each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-γ, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.
Article
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.
Article
Tissue plasminogen activator (t-PA) mRNA levels are high in murine brain, lower in kidney, and undetectable in liver. Differences in t-PA mRNA levels are regulated in part at the transcriptional level. Brain, kidney, and liver nuclear extracts direct regulated transcription from the murine t-PA promoter in a manner that reflects the relative levels of t-PA gene expression in these tissues in vivo. Analysis of mutants has defined two GC box motifs as important elements for regulated transcription in vitro. Upon investigation of protein-DNA binding, we detected an activity in brain extracts which was not detected in kidney or liver extracts. An Sp1-like factor also binds to this region in all three tissue types. DNA interference experiments show that the brain-enriched binding activity and the Sp1-like factor contact the same GC-rich sequences. These studies provide additional evidence that brain-enriched DNA-binding activities can interact with sequences also recognized by ubiquitous transcription factors.
Article
Nerve growth factor (NGF) interacts with two different low-affinity receptors that can be distinguished by affinity crosslinking. Reconstitution experiments by membrane fusion and transient transfection into heterologous cells indicate that high-affinity NGF binding requires coexpression and binding to both the low-affinity NGF receptor and the tyrosine kinase trk gene product. These studies reveal a new growth factor receptor-mediated mechanism of cellular differentiation involving trk and the low-affinity NGF receptor.
Article
We have mapped the cap site of the human plasminogen mRNA by primer extension and PCR techniques and found that it is located at position -161 relative to the first ATG, 97 bases upstream to the 5' end of the previously isolated cDNA clone. Seven human hepatic and non hepatic cell lines and fresh liver cells were tested for human plasminogen mRNA expression: the liver and the liver derived HepG2 cell line represent the major site of plasminogen RNA synthesis while the other cell lines (Hep3B, HeLa, IMR, 293 CaCo and SW626) show much lower levels.
Article
Human SH-SY5Y neuroblastoma cells treated with retinoic acid, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or nerve growth factor differentiated morphologically to neuronlike cells with increased amounts of neurofilament protein and mRNA. All three effectors induced an increase in the amount of relative molecular weight (Mr) 70,000 tissue-type plasminogen activator (t-PA) and its mRNA, as determined by immunocapture, enzyme activity, and Northern blotting analyses. About 90% of the t-PA activity was secreted to the culture medium. In contrast, of the three effectors studied, only TPA induced transcription of the proto-oncogene c-fos, studied as a control gene responsive to various stimuli, and induced a rapid increase in urokinase-type PA (u-PA). Most of the u-PA activity induced by TPA remained cell-associated. Because induction of differentiation correlated closely with induction of t-PA, and not u-PA, the authors propose that t-PA may have a functional role in the morphological differentiation of neuronal cells.
Article
The University of Wisconsin Genetics Computer Group (UWGCG) has been organized to develop computational tools for the analysis and publication of biological sequence data. A group of programs that will interact with each research-article has been developed for the Digital Equipment Corporation VAX computer using the VMS operating system. The programs available and the conditions for transfer are described.
Article
PD 098059 has been shown previously to inhibit the dephosphorylated form of mitogen-activated protein kinase kinase-1 (MAPKK1) and a mutant MAPKK1(S217E,S221E), which has low levels of constitutive activity (Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 7686-7689). Here we report that PD 098059 does not inhibit Raf-activated MAPKK1 but that it prevents the activation of MAPKK1 by Raf or MEK kinase in vitro at concentrations (IC50 = 2-7 microM) similar to those concentrations that inhibit dephosphorylated MAPKK1 or MAPKK1(S217E,S221E). PD 098059 inhibited the activation of MAPKK2 by Raf with a much higher IC50 value (50 microM) and did not inhibit the phosphorylation of other Raf or MEK kinase substrates, indicating that it exerts its effect by binding to the inactive form of MAPKK1. PD 098059 also acts as a specific inhibitor of the activation of MAPKK in Swiss 3T3 cells, suppressing by 80-90% its activation by a variety of agonists. The high degree of specificity of PD 098059 in vitro and in vivo is indicated by its failure to inhibit 18 protein Ser/Thr kinases (including two other MAPKK homologues) in vitro by its failure to inhibit the in vivo activation of MAPKK and MAP kinase homologues that participate in stress and interleukin-1-stimulated kinase cascades in KB and PC12 cells, and by lack of inhibition of the activation of p70 S6 kinase by insulin or epidermal growth factor in Swiss 3T3 cells. PD 098059 (50 microM) inhibited the activation of p42MAPK and isoforms of MAP kinase-activated protein kinase-1 in Swiss 3T3 cells, but the extent of inhibition depended on how potently c-Raf and MAPKK were activated by any particular agonist and demonstrated the enormous amplification potential of this kinase cascade. PD 098059 not only failed to inhibit the activation of Raf by platelet-derived growth factor, serum, insulin, and phorbol esters in Swiss 3T3 cells but actually enhanced Raf activity. The rate of activation of Raf by platelet-derived growth factor was increased 3-fold, and the subsequent inactivation that occurred after 10 min was prevented. These results indicate that the activation of Raf is suppressed and that its inactivation is accelerated by a downstream component(s) of the MAP kinase pathway.
Article
The alpha isoform of enolase is a candidate plasminogen receptor on U937 monocytoid cells [Miles, L. A., Dahlberg, C. L., Plescia, J., Felez, J., Kato, K. & Plow, E. F. (1991) Biochemistry 30, 1682-1691]. In the present study, an enolase-related molecule was detected on the surfaces of peripheral blood monocytes and neutrophils by fluorescence-activated cell sorting. A mRNA transcript encoding a unique membrane form of an enolase-related molecule was not detected by Northern-blotting and primer-extension analyses, consistent with the cell-surface protein being authentic alpha-enolase. Both the alpha and beta isoforms of purified enolase, bound plasminogen with an affinity similar to that of the cell surface. Moreover, immunopurified alpha-enolase enhanced plasminogen activation by tissue plasminogen activator and blocked the binding of plasminogen to alpha 2-antiplasmin, mimicking functions arising from the association of plasminogen with cells. The interaction of the enolase isoforms with plasminogen was dependent upon recognition of the C-terminal lysyl residue of the enolases by the lysine-binding sites of plasminogen, as the interaction was blocked by (a) peptides with C-terminal lysine residues and (b) an antibody to the C-terminal aspect of enolase. A monoclonal antibody was developed, characterized and utilized to quantify the enolase molecules present on the surface of U937 cells. A substantial number of molecules, 1.8 x 10(6)/cell, was present, accounting for approximately 10% of the plasminogen-binding capacity of these cells. These studies clearly establish the role of enolase as a cell-surface plasminogen-binding site with profibrinolytic functions.
Article
Phosphatidylinositol-3-kinase is an important enzyme for intracellular signaling. The microbial product wortmannin and some of its analogues have been shown to be potent inhibitors of phosphatidylinositol-3-kinase. The 50% inhibitory concentration for inhibition by wortmannin is 2 to 4 nM. Kinetic analysis demonstrates that wortmannin is a noncompetitive, irreversible inhibitor of phosphatidylinositol-3-kinase, with inactivation being both time- and concentration-dependent. Wortmannin has previously been reported to be an inhibitor of myosin light chain kinase but with an inhibitory concentration of 0.2 microM. Wortmannin was found not to be an inhibitor of phosphatidylinositol-4-kinase, protein kinase C, or protein tyrosine kinase. Wortmannin inhibited the formation of phosphatidylinositol-3-phosphates in intact cells. The results of the study suggest that wortmannin and its analogues may have utility as pharmacological probes for studying the actions of phosphatidylinositol-3-kinase.
Article
Recently, we reported the production and secretion of plasminogen (Pg) in cultured rat brain microglia [Nakajima et al., (1992) Fedn. Eur. Biochem. Socs Lett. 308, 179-182]. To investigate the physiological significance of Pg, we determined the effect of Pg on neurite outgrowth of cultured neocortical explants of an embryonic rat brain in serum-free chemically defined medium. Pg markedly enhanced the neurite outgrowth. Although plasmin, which is derived from Pg by activation by urokinase (UK), had a similar effect in this explant culture system, UK itself did not show any effect. Furthermore, we studied the characteristics of Pg binding to cultured neocortical neurons dissociated from an embryonic 16-day-old rat brain by using 125I-Pg. Specific binding of Pg to neocortical neurons was detected and Scatchard plot analysis revealed high- and low-affinity binding sites on the neurons. The estimated dissociation constants of high- and low-affinity binding sites were approximately 16.1 and 124.2 nM, respectively. These results suggest that microglia-derived Pg plays certain roles in the regulation of neurite extension through binding to the surface of neocortical neurons.
Article
The role of the common low affinity neurotrophin receptor, p75, is controversial. Studies using cell lines suggest that p75 is either essential or dispensable for neurotrophin responsiveness. To resolve this issue, we studied the survival response of developing neurons obtained from normal mouse embryos and embryos with a null mutation in the p75 gene. Embryonic cranial sensory and sympathetic neurons from mutant embryos responded normally to NGF, BDNF, NT-3, and NT-4/5 at saturating concentrations. Dose responses of sympathetic and visceral sensory neurons from mutant embryos were also normal. In contrast, embryonic cutaneous sensory trigeminal neurons isolated from mutant embryos displayed a consistent displacement in the NGF dose response. Compared with wild-type neurons, the concentration of NGF that promoted half-maximal survival was 3- to 4-fold higher for neurons from homozygous embryos and was 2-fold higher for neurons from heterozygous embryos. These findings indicate that p75 enhances the sensitivity of NGF-dependent cutaneous sensory neurons to NGF and may explain, at least in part, the cutaneous sensory abnormalities of mice homozygous for the p75 mutation.
Article
Plasminogen is one of the key elements in the fibrinolytic process. Like most of the gene products that participate in such reactions and which interact with plasminogen, the site of its synthesis is mainly confined to the hepatocyte. Plasminogen RNA has additionally been detected in kidney and very low amounts also in testes. Deletional analysis has indicated that two 5' sequences located within 2.5 kb of the first ATG are responsible for the transcriptional activation and the tissue specificity of the expression of the gene. By DNase protection and gel mobility shift assays with HepG2 nuclear extracts, the two sequences were localized and found to be the recognition sites for the widely known hepatocyte nuclear factor 1 (HNF-1) a trans-acting factor, and a nuclear factor like activator protein 3 (AP-3). The first one lies in a rather unusual position, i.e. within the 5'-untranslated region. The latter is located further upstream in a region between --2200 and --2100 from the plasminogen mRNA cap site. Moreover, site-directed mutagenesis coupled by functional experiments in HepG2 cells has demonstrated a synergism between these two positively acting elements in controlling the transcription of the human plasminogen gene.
Article
The primary hypothesis of this report is that the formation and subsequent removal of fibrin in specific tissues during pathologic processes reflects temporal changes in the local expression of key procoagulant and fibrinolytic genes. To begin to test this hypothesis, we have used quantitative PCR assays and in situ hybridization analysis to examine the effects of endotoxin on the expression of specific genes in murine tissues, and to relate these changes to fibrin deposition/dissolution using immunohistochemical approaches. Endotoxin caused large increases in plasminogen activator inhibitor-1 mRNA and modest increases in tissue factor mRNA in most tissues examined. However, fibrin was only detected in the kidneys and adrenals of endotoxin-treated mice, and it was transient. Unexpectedly, changes in urokinase-type plasminogen activator mRNA but not tissue-type plasminogen activator mRNA correlated with fibrin deposition/dissolution in these tissues. Pretreatment of mice with the fibrinolytic inhibitor epsilon-aminocaproic acid before endotoxin increased both the number of fibrin-positive tissues and the duration of fibrin deposition in the kidneys and adrenals. These results suggest that the absence of fibrin in some tissues reflects ongoing local fibrinolysis, and that increases in plasminogen activator inhibitory and tissue fac- tor gene expression and decreases in urokinase-type plasminogen activator expression are necessary for tissue-specific fibrin deposition. Changes in tissue-type plasminogen activator gene expression do not appear to be essential for fibrin deposition/dissolution in this murine model of sepsis.
Article
The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by gradually exiting from the cell cycle and differentiating to a sympathetic neuronal phenotype. We have shown previously () that NGF induces the expression of the p21 WAF1/CIP1/Sdi1 (p21) cyclin-dependent kinase (Cdk) inhibitor protein and the G1 phase cyclin, cyclin D1. In this report, we show that induction is at the level of transcription and that the DNA elements in both promoters that are required for NGF-specific induction are clusters of binding sites for the Sp1 transcription factor. NGF also induced a synthetic promoter with repeated Sp1 sites linked to a core promoter, and a plasmid regulated by a chimeric transactivator in which the Gal4 DNA binding domain is fused to the Sp1 transactivation domain, indicating that this transactivation domain is regulated by NGF. Epidermal growth factor, which is a weak mitogen for PC12, failed to induce any of these promoter constructs. We consider a model in which the PC12 cell cycle is arrested as p21 accumulates and attains inhibitory levels relative to Cdk/cyclin complexes. Sustained activation of p21 expression is proposed to be a distinguishing feature of the activity of NGF that contributes to PC12 growth arrest during differentiation
Article
Excess excitatory amino acids can provoke neuronal death in the hippocampus, and the extracellular proteases tissue plasminogen activator (tPA) and plasmin (ogen) have been implicated in this death. To investigate substrates for plasmin that might influence neuronal degeneration, extracellular matrix (ECM) protein expression was examined. Laminin is expressed in the hippocampus and disappears after excitotoxin injection. Laminin disappearance precedes neuronal death, is spatially coincident with regions that exhibit neuronal loss, and is blocked by either tPA-deficiency or infusion of a plasmin inhibitor, both of which also block neuronal degeneration. Preventing neuron-laminin interaction by infusion of anti-laminin antibodies into tPA-deficient mice restores excitotoxic sensitivity to their hippocampal neurons. These results indicate that disruption of neuron-ECM interaction via tPA/plasmin catalyzed degradation of laminin sensitizes hippocampal neurons to cell death.
Article
This review focuses on recent advances in our understanding of receptor-mediated signaling by the neurotrophins NGF, BDNF, NT3, and NT4/5. Two distinct receptor types have been distinguished, Trks and p75. The Trks are receptor tyrosine kinases that utilize a complex set of substrates and adapter proteins to activate defined secondary signaling cascades required for neurotrophin-promoted neuronal differentiation, plasticity, and survival. A specialized aspect of Trk/neurotrophin action in neurons is the requirement for retrograde signaling from the distal periphery to the cell body. p75 is a universal receptor for neurotrophins that is a member of the TNF receptor/Fas/CD40 superfamily. p75 appears to modify Trk signaling when the two receptor types are coexpressed. When expressed in the absence of Trks, p75 mediates responses to neurotrophins including promotion of apoptotic death. The mechanisms of p75 receptor signaling remain to be fully understood.
Article
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Article
We previously identified the urokinase plasminogen activator receptor (UPAR) as a gene induced by nerve growth factor (NGF), but not by epidermal growth factor (EGF), in PC12 cells (Farias-Eisner et al. [2000] J. Neurosci. 20:230-239). Antisense oligonucleotides for the UPAR mRNA or an antibody directed against UPAR protein, added simultaneously with NGF, block NGF-induced morphological and biochemical differentiation of PC12 cells. In this report, we show that anti-UPAR antibody blocks morphological differentiation and the expression of two NGF-specific secondary response genes, collagenase-1 and transin, in PC12 cells only during the first 2 hr following NGF exposure. These data suggest that induced UPAR expression is required only over a short period of time following exposure to NGF for the differentiation program in PC12 cells to proceed. For two models of "primed" PC12 cells, we found that UPAR expression and function are not required for NGF-induced differentiation. UPAR and the secondary response genes collagenase-1 and transin are not induced in "primed" PC12 cells in response to NGF, and anti-UPAR antibody does not block morphological differentiation in these cells. Our data suggests that UPAR is required only transiently during the "priming" of PC12 cells in NGF-induced PC12 cell differentiation.
Article
The regulation of plasminogen activation involves genes for two plasminogen activators (tissue type and urokinase type), two specific inhibitors (type 1 and type 2), and a membrane-anchored urokinase-type plasminogen-activator-specific receptor. This system plays an important role in various biological processes involving extracellular proteolysis. Recent studies have revealed that the system, through interplay with integrins and the extracellular matrix protein vitronectin, is also involved in the regulation of cell migration and proliferation in a manner independent of proteolytic activity. The genes are expressed in many different cell types and their expression is under the control of diverse extracellular signals. Gene expression reflects the levels of the corresponding mRNA, which should be the net result of synthesis and degradation. Thus, modulation of mRNA stability is an important factor in overall regulation. This review summarizes current understanding of the biology and regulation of genes involved in plasminogen activation at different levels.
Article
Tissue-type plasminogen activator (tPA) has been implicated in a variety of types of neural plasticity, including cell migration, occlusion-induced visual system plasticity, and learning. In the periphery, plasminogen serves as tPA's primary substrate; however, studies attempting to identify plasminogen in the central nervous system have produced mixed results. We have performed a comprehensive, multitechnique study examining plasminogen expression in the neonatal and adult mouse brain. Reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization reveal plasminogen mRNA in the cortex, hippocampus and cerebellum of both neonatal and adult C57BL/6 mice. Immunocytochemistry reveals plasminogen protein expression in these same brain regions. Notably, plasminogen expression in the cerebellum occurs in the granule cell and the Purkinje cell layers. tPA activity in these same regions is involved in granule cell migration during development and motor learning in adulthood. Therefore, these findings demonstrate that plasminogen is present in the central nervous system and localized to areas where it could serve as a substrate for plasticity-related increases in tPA activity.
Article
In vitro studies demonstrate a role for the plasminogen (Plg) system in neurological function and recently in vivo studies show a role of the Plg system in neurodegeneration after the injection of an excitotoxic agent. Differences in the development of neurological function, however, have not been demonstrated in the Plg-deficient (Plg-/-) mice compared to wild-type (WT) mice. The role of Plg system in neurological function may relate to remodeling which occurs in response to various environmental challenges. In this study, behaviors (open field, grooming, hind-leg gait, water maze, and acoustic startle reflex) were tested in the Plg-deficient and WT mice at 6-8 weeks of age. Grooming, a response to the stress of an open field or fur moistening, was increased in the Plg-/--deficient mice compared to WT mice, and the acoustic startle reflex (ASR) was markedly decreased in the Plg-/- mice. The reduced ASR in Plg-/- mice occurred in mice with a mixed C57BL:129 background or in mice with a C57BL background. Plg was required for the ASR, since a deficiency of the Plg activators, urokinase (uPA) or tissue Plg activator (tPA), did not cause a reduction in the ASR compared to their WT control. Infusion of Plg directly into the brain was effective in restoring the ASR in the Plg-/- mice, but had no effect on the ASR of WT mice. Peripheral bolus injections of Plg or infusion into the jugular vein were ineffective in restoring the ASR in the Plg-/- mice. These results indicate that Plg is required for the appropriate response to the environmental challenge of a sudden loud sound, and that the response can be restored in Plg-/- mice by directly infusing Plg into the brain.