Article

Clotrimazole, an antifungal drug possessing diverse actions, increases membrane permeation of cadmium in rat thymocytes

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In previous study, clotrimazole, an antifungal drug, exerted potent cytotoxic action on rat thymocytes in presence of metal divalent cations such as Cd(2+) and Pb(2+). To reveal one of toxicological characteristics of clotrimazole, we examined the effect of clotrimazole on intracellular concentration of metal divalent cations by flow cytometer with fluo-3, a fluorescent. Simultaneous application of clotrimazole and CdCl(2) significantly decreased the cell viability although their concentrations were not cytotoxic, respectively. Clotrimazole alone increased the intensity of fluo-3 fluorescence, suggesting an increased concentration of intracellular Ca(2+). The intensity of fluo-3 fluorescence augmented by the combination of clotrimazole and CdCl(2) was much higher than that by respective agents. Removal of external Ca(2+) further increased the intensity of fluorescence augmented by the combination. Furthermore, the application of MnCl(2) did not attenuate the intensity in the presence of CdCl(2). Therefore, it is suggested that the augmentation of fluo-3 fluorescence in the simultaneous presence of clotrimazole and CdCl(2) is Cd(2+)-dependent. Clotrimazole may increase membrane permeation of Cd(2+).

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In some cases, metal ions can regulate the activity of an organic drug or vice versa without requiring the intake of the corresponding metallodrug. Such examples concerning AAs are manifold in the literature [35][36][37][38][39][40][41][42][43][44][45][46][47]. ...
Article
Full-text available
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in the field of coordination derivatives of AAs synthesized for medical purposes by discussing the corresponding publications and emphasizing the most promising compounds discovered so far. The resulting overview highlights the efficiency of AAs and their metallic species, as well as the potential still lying in this research area.
... Apart from that it is the most commonly prescribed topical antifungal in the United Kingdom for the treatment of tinea pedis. It has a recommended dose or two to three times daily (Steven and James, 1999;Tomohiro et al., 2007;Heinrich, 1978). ...
Article
Full-text available
THE OBJECTIVE OF WORK WAS TO FORMULATE, EVALUATE AND COMPARE THE TRANSDERMAL POTENTIAL OF NOVEL VESICULAR NANOCARRIERS: ethosomes and ultradeformable liposomes, containing clotrimazole (CLT), an anti-fungal bioactive. The ethosomal formulation (ET4) and ultradeformable liposomal (UL) formulation (TT3) showed highest entrapment 68.73 ± 1.4% and 55.51 ± 1.7%, optimal nanometric size range 132 ± 9.5 nm and 121 ± 9.7 nm, and smallest polydispersity index 0.027 ± 0.011 and 0.067 ± 0.009, respectively. The formulation ET4 provided enhanced transdermal flux 56.25 ± 5.49 μg/cm(2)/h and decreased the lag time of 0.9 h in comparison to TT3 formulation (50.16 ± 3.84 μg/cm(2)/h; 1.0 h). Skin interaction and FT-IR studies revealed greater penetration enhancing effect of ET4 than TT3 formulation. ET4 formulation also had the highest zone of inhibition (34.6 ± 0.57 mm), in contrast to TT3 formulation (29.6 ± 0.57 mm) and marketed cream formulation (19.0 ± 1.00 mm) against candidal species. Results suggested ethosomes to be the most proficient carrier system for dermal and transdermal delivery of clotrimazole.
Article
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Article
Econazole, one of imidazole antifungals, has been reported to exhibit an inhibitory action on Mycobacterium tuberculosis and its multidrug-resistant strains under in vitro and ex vivo conditions. There is a chemotherapeutic potential of econazole against tuberculosis. We have revealed that Zn(2+) at micromolar concentrations potentiates the cytotoxicity of imidazole antifungals by increasing membrane Zn(2+) permeability. It is reminiscent of a possibility that econazole exhibits harmful action on human in the presence of Zn(2+) at a physiological range when the agent is systemically administered. Because it is necessary to characterize the cytotoxic action of econazole in the presence of Zn(2+), we have cytometrically examined the effects of econazole, ZnCl(2), and their combination on rat thymocytes. ZnCl(2) at concentrations ranging from 1 microM to 30 microM significantly increased the lethality induced by 10 microM econazole in a concentration-dependent manner. Econazole at a sublethal concentration of 1 microM significantly augmented the intensity of side scatter in the presence of micromolar ZnCl(2), suggesting the change in an intracellular circumstance by the combination of econazole and ZnCl(2). Econazole at 0.3 microM or more in the presence of ZnCl(2) increased the intensity of Fluo-3 fluorescence, an indicator for intracellular Ca(2+). Furthermore, the intensity of FluoZin-3 fluorescence, an indicator for intracellular Zn(2+), was also augmented by econazole at 0.1 microM or more in the presence of ZnCl(2). Results suggest that the combination of submicromolar econazole with micromolar ZnCl(2) may increase the intracellular concentration of Ca(2+) and Zn(2+), leading to disturbance of intracellular Ca(2+) and Zn(2+) homeostasis that triggers cytotoxic action.
Article
The use of zinc as a nutritional supplement has become common in many countries. Since zinc has diverse actions, it may be difficult to predict its synergistic and/or antagonistic action in simultaneous presence of drug(s). The combination of imidazole antifungals, but not triazole antifungals, with 3-30 microM ZnCl2 significantly increased the lethality of rat thymocytes. Since intracellular Zn2+ exerts various actions on the process of cell death, there is a possibility that imidazole antifungals, but not triazole antifungals, increases concentration of intracellular Zn2+ ([Zn2+]i). To test the possibility, we examined the effects of imidazole and triazole antifungals on [Zn2+]i of rat thymocytes in absence and presence of extracellular Zn2+ by the use of FluoZin-3, a fluorescent Zn2+ indicator. Imidazole antifungals (clotrimazole, econazole, and oxiconazole) increased the [Zn2+]i in the presence of extracellular Zn2+ while it was not the case for triazole antifungals (itraconazole and fluoconazole). Thus, it is suggested that imidazole antifungals increase the membrane permeability of Zn2+. The potency order in the augmentation of FluoZin-3 fluorescence by imidazole antifungals in the presence of extracellular Zn2+ was the same as that in their cytotoxic action. Therefore, the cytotoxic action of imidazole antifungals may be related to their action on membrane Zn2+ permeability.
Article
Full-text available
We have developed a procedure to simultaneously estimate cell viability and the cellular level of nonprotein thiol (presumably glutathione) using two fluorescent dyes, 5-chloromethylfluorescein (5CMF) and ethidium, and rat thymocytes. Diethylmaleate and N-ethylmaleimide reduced, respectively, the intensity of 5CMF fluorescence to 0.23 and 0.1, relative to the control. Incubation with buthionine sulfoximine, an inhibitor of glutathione synthesis, decreased the intensity of 5CMF fluorescence to 0.61. Results indicate that 5CMF fluorescence can be attenuated by agents that decrease the level of cellular nonprotein thiols, suggesting that 5CMF fluorescence is utilized for estimating the level of cellular glutathione. Hydrogen peroxide (10 mu M to 3 mM) reduced the intensity of 5CMF fluorescence in a dose-dependent manner and increased the number of thymocytes stained with ethidium (presumably dead cells or cells with compromised membranes) at concentrations of 300 mu M or greater. Reduction of cellular glutathione level seems to precede cell death in which oxidative stress is involved.
Article
Full-text available
Effects of amyloid beta-protein fragment 25-35, A beta P(25-35), on the membrane permeability of organic molecules were examined in the brain neurons dissociated from rats by using an argon laser (equipped in flow cytometer and laser microscope) and a combination of two fluorescent dyes, fluo-3-AM and ethidium bromide. A beta P(25-35) at concentrations of 1 mu M or greater induced both leakage of fluo-3 from the neurons and permeation of ethidium across the membrane in a dose-dependent manner, although both dyes are highly impermeant to the intact plasma membrane. Thus, A beta P(25-35) seems to increase not only membrane permeability of inorganic ions such as Ca2+, Na+ and K+, as previously suggested, but also that of organic molecules. Therefore, the brain neuron membrane is suggested to lose its integrity in the presence of A beta P(25-35) that leads to neuronal death.
Article
Full-text available
The Ca(2+)-dependent K+ channel of human red cells was inhibited with high affinity by several imidazole antimycotics which are potent inhibitors of cytochrome P-450. IC50 values were (in microM): clotrimazole, 0.05; tioconazole, 0.3; miconazole, 1.5; econazole, 1.8. Inhibition of the channel was also found with other drugs with known cytochrome P-450 inhibitory effect. However, no inhibition was obtained with carbon monoxide (CO). This suggests that, given the high selectivity of the above inhibitors for the heme moiety, a different but closely related to cytochrome P-450 kind of hemoprotein may be involved in the regulation of the red cell Ca(2+)-dependent K+ channel. Clotrimazole also inhibited two other charybdotoxin-sensitive Ca(2+)-dependent K+ channels, those of rat thymocytes (IC50 = 0.1-0.2 microM) and of Ehrlich ascites tumor cells (IC50 = 0.5 microM). Imidazole antimycotics inhibit also receptor-operated Ca2+ channels (Montero, M., Alvarez, J. and García-Sancho, J. (1991) Biochem. J. 277, 73-79). This suggests that both Ca2+ and Ca(2+)-dependent K+ channels might have a similar regulatory mechanism involving a cytochrome.
Article
Full-text available
Fluo-3, one member of a family of new fluorescent Ca2+ indicators excitable at wavelengths in the visible (Minta, A., Kao, J. P. Y., and Tsien, R. Y. (1989) J. Biol. Chem. 264, 8171-8178), has been tested in living cells. We demonstrate that fluo-3 can be loaded into fibroblasts and lymphocytes by incubation with the pentaacetoxymethyl ester of the dye and that the ester is hydrolyzed intracellularly to yield genuine fluo-3 capable of indicating changes in [Ca2+]i induced by agonist stimulation. Fluo-3 can also be microinjected into fibroblasts along with photolabile compounds such as nitr-5 and caged inositol trisphosphate for photorelease experiments. Fluo-3 permits continuous monitoring of [Ca2+]i without interference with use of UV-sensitive caged compounds. A procedure for combined use of ionophore and heavy metal ions in end-of-experiment calibration of fluo-3 intensities to give [Ca2+]i is also described.
Article
Full-text available
Clotrimazole (CLT) has recently been shown to be a potent and specific inhibitor of the Ca(2+)-activated K+ channel and to thereby prevent K+ loss and cellular dehydration of sickled erythrocytes. This evidence suggests that oral CLT may be a useful new therapy for sickle cell disease. Here, we describe the development of an HPLC assay to measure CLT, a method we used to study the pharmacokinetics and transport of CLT in normal volunteers. The assay's linear range extended to 10 mumol/L; the detection limit was 0.1 mumol/L, analytical recovery 97.7%, and run-to-run imprecision (CV) < 4.7%. In unaffected subjects, CLT concentration peaked within 6 h of oral administration and returned to close to baseline by 24 h. High-density lipoproteins appear to be the main carriers of this drug in both normo- and hypertriglyceridemic plasma. We conclude that the method described here is ideally suited for therapeutic monitoring of CLT concentrations.
Article
Full-text available
We have investigated the interaction of clotrimazole (CLT) and related compounds with the erythroid Ca(2+)-activated K+ channel, a mediator of sickle cell dehydration. We measured K+ transport, membrane potential, and cell volume upon activation of this pathway in sickle erythrocytes. CLT blocked almost completely Ca(2+)-activated K+ transport in homozygous hemoglobin S cells, with IC50 values of 29 +/- 15 nM in isotonic 20 mM salt solution and 51 +/- 15 nM in normal saline (n = 3). The inhibition of K+ transport by CLT was caused by a specific interaction with the Ca(2+)-activated K+ channel of human red cells, since it displaced bound 125I-Charybdotoxin, a specific ligand of the Gardos channel, with an IC50 (12 +/- 4 nM in isotonic 20 mM) similar to the IC50 values for flux inhibition. When homozygous hemoglobin S cells were dehydrated by incubation in the presence of 100 microM CaCl2 and the ionophore A23187, or by exposure to cycles of oxygenation and deoxygenation, CLT effectively inhibited cell dehydration and K+ loss. The IC50 of CLT for inhibition of Ca(2+)-activated K+ transport in sickle cells is significantly lower than plasma concentrations of CLT achievable after nontoxic oral doses. We therefore propose that oral administration of CLT may prevent red cell dehydration in patients with sickle cell anemia.
Article
Full-text available
The effect of hydrogen peroxide (H2O2) on the intracellular Ca2+ concentration ([Ca2+]i) of rat thymocytes was examined by a flow cytometer and two fluorescent dyes, fluo-3-AM and ethidium bromide, a dye impermeant to intact membranes, to characterize the H2O2-induced increase in [Ca2+]i. H2O2 at concentrations greater than 30 microM dose-dependently increased the [Ca2+]i of thymocytes which were not stained with ethidium. Removal of external Ca2+ greatly reduced the degree of H2O2-induced increase in [Ca2+]i. However, H2O2 still increased the [Ca2+]i under the external Ca(2+)-free condition. Diethylmaleate, which is known to produce a chemical depletion of cellular nonprotein thiol, significantly increased the [Ca2+]i. Dithiothreitol, which is used to protect cellular nonprotein thiol, slightly decreased the [Ca2+]i, but greatly reduced the H2O2-induced increase in [Ca2+]i. Therefore, it is considered that H2O2 may increase the [Ca2+]i through a mechanism related to the effects of H2O2 on the cellular nonprotein thiol.
Article
Full-text available
Clotrimazole (CLT), an antimycotic drug, has been shown to inhibit proliferation of normal and cancer cell lines and its systemic use as a new tool in the treatment of proliferative disorders is presently under scrutiny (Benzaquen, L. R., Brugnara, C., Byers, H. R., Gattoni-Celli, S., and Halperin, J. A. (1995) Nature Med. 1, 534-540). The action of CLT is thought to involve depletion of intracellular Ca2+ stores but the underlying mechanism has not been defined. The present study utilized membrane vesicles of rabbit cardiac sarcoplasmic reticulum (SR) to determine the mechanism by which CLT depletes intracellular Ca2+ stores. The results revealed a strong, concentration-dependent inhibitory action of CLT on the ATP-energized Ca2+ uptake activity of SR (50% inhibition with approximately 35 microM CLT). The inhibition was of rapid onset (manifested in <15 s), and was accompanied by a 7-fold decrease in the apparent affinity of the SR Ca2+-ATPase for Ca2+ and a minor decrement in the enzyme's apparent affinity toward ATP. Exposure of SR to CLT in the absence or presence of Ca2+ resulted in irreversible inhibition of Ca2+ uptake demonstrating that the Ca2+-bound and Ca2+-free conformations of the Ca2+-ATPase are CLT-sensitive. Introduction of CLT to the reaction medium subsequent to induction of enzyme turnover with Ca2+ and ATP resulted in instantaneous cessation of Ca2+ transport indicating that an intermediate enzyme species generated during turnover undergoes rapid inactivation by CLT. The inhibition of Ca2+ uptake by CLT was accompanied by inhibition of Ca2+-stimulated ATP hydrolysis and Ca2+-induced phosphoenzyme intermediate formation from ATP in the ATPase catalytic cycle. Phosphorylation of the Ca2+-deprived enzyme with Pi in the reverse direction of catalytic cycle and Ca2+ release from Ca2+-preloaded SR vesicles were unaffected by CLT. It is concluded that CLT depletes intracellular Ca2+ stores by inhibiting Ca2+ sequestration by the Ca2+-ATPase. The mechanism of ATPase inhibition involves a drug-induced alteration in the Ca2+-binding site(s) resulting in paralysis of the enzyme's catalytic and ion transport cycle. CLT (50 microM) caused marked depression of contractile function in isolated perfused, electrically paced rabbit heart preparations. The contractile function recovered gradually following withdrawal of CLT from the perfusate indicating the existence of mechanisms in the intact cell to inactivate, metabolize, or clear CLT from its target site.
Article
Full-text available
Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca(2+) homeostasis. We investigated the effects of clotrimazole on acute lymphoblastic leukemia (ALL) cells. Treatment with 10 microM clotrimazole (a concentration achievable in vivo) reduced cell recovery from cultures of all nine ALL cell lines studied (B-lineage: OP-1, SUP-B15, RS4;11, NALM6, REH, and 380; T-lineage: MOLT4, CCRF-CEM, and CEM-C7). After 4 days of culture, median cell recovery was 10% (range, <1% to 37%) of cell recovery in parallel untreated cultures. Clotrimazole also inhibited recovery of primary ALL cells cultured on stromal feeder layers. After leukemic cells from 16 cases of ALL were cultured for 7 days with 10 microM clotrimazole, median cell recovery was <1% (range, <1% to 16%) of that in parallel untreated cultures. Clotrimazole was active against leukemic cells with genetic abnormalities associated with poor response to therapy and against multidrug-resistant cell lines. In contrast, mature T lymphocytes and bone marrow stromal cells were not affected. Clotrimazole induced depletion of intracellular Ca(2+) stores in ALL cells, which was followed by apoptosis, as shown by annexin V binding and DNA fragmentation. Thus, clotrimazole is cytotoxic to ALL cells at concentrations achievable in vivo.
Article
Full-text available
Cadmium is a well-known carcinogenic and immunotoxic metal commonly found in cigarette smoke and industrial effluent. An altered intracellular calcium ([Ca(2+)](i)) level has been implicated in the pathophysiology of immune dysfunction. The present study was designed to determine the possible involvement of calcium (Ca(2+)) and mitogen-activated protein kinases (MAPKs) signaling pathways on cadmium-induced cell death in J774A.1 murine macrophage cells. Cadmium caused a low-amplitude [Ca(2+)](i) elevation at 20 microM and rapid and high-amplitude [Ca(2+)](i) elevation at 500 microM. Exposure to cadmium dose-dependently induced phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and deactivated p38 MAPK. Use of the selective JNK inhibitor SP600125 suggested that activation of JNK is pro-apoptotic and pro-necrotic. Buffering of the calcium response with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxy-methyl) ester (BAPTA-AM) and ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) completely blocked cadmium-induced apoptotic response. The pretreatment of cells with BAPTA-AM and EGTA suppressed the cadmium-induced cell injury, including growth arrest, mitochondrial activity impairment, and necrosis, and it also recovered the cadmium-altered JNK and p38 MAPK activity. Chelating [Ca(2+)](i) also reversed cadmium-induced hydrogen peroxide generation, suggesting that production of reactive oxygen species (ROS) is related to [Ca(2+)](i). The present study showed that cadmium induces a [Ca(2+)](i)-ROS-JNK-caspase-3 signaling pathway leading to apoptosis. Furthermore, cadmium-induced [Ca(2+)](i) regulates phosphorylation/dephosphorylation of JNK and p38, and it modulates signal transduction pathways to proliferation, mitochondrial activity, and necrosis.
Article
Full-text available
Clotrimazole (CLT) is an antimycotic imidazole derivative that is known to inhibit cytochrome P-450, ergosterol biosynthesis and proliferation of cells in culture, and to interfere with cellular Ca(2+) homeostasis. We found that CLT inhibits the Ca(2+)-ATPase of rabbit fast-twitch skeletal muscle (SERCA1), and we characterized in detail the effect of CLT on this calcium transport ATPase. We used biochemical methods for characterization of the ATPase and its partial reactions, and we also performed measurements of charge movements following adsorption of sarcoplasmic reticulum vesicles containing the ATPase onto a gold-supported biomimetic membrane. CLT inhibits Ca(2+)-ATPase and Ca(2+) transport with a K(I) of 35 mum. Ca(2+) binding in the absence of ATP and phosphoenzyme formation by the utilization of ATP in the presence of Ca(2+) are also inhibited within the same CLT concentration range. On the other hand, phosphoenzyme formation by utilization of P(i) in the absence of Ca(2+) is only minimally inhibited. It is concluded that CLT inhibits primarily Ca(2+) binding and, consequently, the Ca(2+)-dependent reactions of the SERCA cycle. It is suggested that CLT resides within the membrane-bound region of the transport ATPase, thereby interfering with binding and the conformational effects of the activating cation.
Article
Iron overload occurs in brain after intracerebral hemorrhage (ICH). Deferoxamine, an iron chelator, attenuates perihematomal edema and oxidative stress in brain after ICH. We investigated the effects of deferoxamine on cerebrospinal fluid (CSF) free iron and brain total iron following ICH. Rats received an infusion of 100-μL autologous whole blood into the right basal ganglia, then were treated with either deferoxamine (100 mg/kg, i.p., administered 2 hours after ICH and then at 12-hour intervals for up to 7 days) or vehicle. The rats were killed at different time points from 1 to 28 days for measurement of free and total iron. Behavioral tests were also performed. Free iron levels in normal rat CSF were very low (1.1±0.4 μmol). After ICH, CSF free iron levels were increased at all time points. Levels of brain total iron were also increased after ICH (p<0.05). Deferoxamine given 2 hours after ICH reduced free iron in CSF at all time points. Deferoxamine also reduced ICH-induced neurological deficits (p<0.05), but did not reduce total brain iron. In conclusion, CSF free iron levels increase after ICH and do not clear for at least 28 days. Deferoxamine reduces free iron levels and improves functional outcome in the rat, indicating that it may be a potential therapeutic agent for ICH patients.
Article
Cadmium, an environmental pollutant, has been reported to induce apoptosis in murine lymphocytes. To reveal the mechanism of cadmium-induced apoptosis, one of important questions is whether cadmium increases intracellular concentration of Ca2+ ([Ca2+]i), Cd2+ ([Cd2+]i) or both. It is difficult to detect the increase in [Ca2+]i using Ca2+-chelator-based fluorescent Ca2+ indicators in the presence of Cd2+ because of their sensitivity to Cd2+. Therefore, the study on membrane response such as Ca2+-dependent hyperpolarization gives a clue to reveal whether the [Ca2+]i or [Cd2+]i is increased. Cadmium at concentrations of 3 μM or more dose-dependently augmented fluo-3 fluorescence in rat thymocytes, presumably suggesting an increased [Ca2+]i. However, the membranes were not hyperpolarized although the cells possess Ca2+-dependent K+ channels. One may argue that cadmium inhibits Ca2+-dependent K+ channels so that cadmium fails to hyperpolarize the membranes. It is unlikely because the [Ca2+]i increased by A23187, a calcium ionophore, elicited the hyperpolarization in the presence of Cd2+. Furthermore, the profile of cytotoxicity induced by cadmium, examined by ethidium bromide and annexin V-FITC, was different from that induced by A23187. Taken together, it is concluded that the application of cadmium increases the [Cd2+]i rather than the [Ca2+]i in rat thymocytes, resulting in the induction of cytotoxicity.
Article
Lead is ubiquitous in our environment and lead poisoning is a major public health problem worldwide. In this study, to see if intracellular Pb(2+) induces the exposure of phosphatidylserine in rat thymocyte membranes, we have examined the effect of PbCl(2) on rat thymocytes treated with A23187 using a flow cytometer with appropriate fluorescent indicators under nominally-Ca(2+)-free condition. PbCl(2) at 1-30 μM dose-dependently induced the exposure of phosphatidylserine on outer membranes, associated with increasing the concentration of intracellular Pb(2+). The potency of intracellular Pb(2+) to induce the apoptotic change in thymocyte membranes seems to be greater than those of intracellular Ca(2+) and Cd(2+). Results suggest that intracellular Pb(2+) triggers apoptosis of rat thymocytes. This action of Pb(2+) may be one of mechanisms for the lead-induced changes in immunity.
Article
A series of experiments was carried out with the antimycotic agent clotrimazole to establish MICs against a number of different yeasts and to estimate its blood levels following oral administration. Marked differences were noted between the MIC against A and B serotypes of Candida albicans in its yeast-like cell form, that against Type B being nearly 10-times higher than against Type A. Against the mycelial form, however, the MIC was much lower and there was little difference between the levels for the two serotypes. Clotrimazole administered in oral tablet form appeared to be poorly absorbed, little being transferred to the blood. Urinary levels were low and large amounts of the drug were detected in the faeces. Serum levels were below MIC levels in all cases examined. Blood levels 3-times as great as those after the same dosage in tablet form were produced when clotrimazole was given in oil solution and even with 250 mg, effective blood levels were achieved and maintained.
Article
Effects of tri-n-butyltin (TBT) on mouse thymocytes were examined using a flow-cytometer and fluorescent dyes for membrane potential and intracellular Ca2+ ([Ca2+]i). TBT at concentrations from 1 x 10(-7) M to 3 x 10(-7) M caused hyperpolarization in thymocytes during 30 min. after drug application in a time- and dose-dependent manner. Further increase in TBT concentration (to 1 x 10(-6) M) made hyperpolarization of thymocytes more profound within 5 min. after application, thereafter gradually depolarized them during the next 25 min. TBT at 3 x 10(-8) M or more (up to 1 x 10(-6) M) increased the [Ca2+]i of thymocytes. After reaching maximum [Ca2+]i at the various TBT concentrations used within 5 min. after drug application, the [Ca2+]i slightly decreased in a time-dependent manner. Effects of TBT on membrane potential and the [Ca2+]i were greatly reduced under nominal external Ca(2+)-free condition. Results suggest that TBT can promote Ca(2+)-influx to thymocytes, resulting in hyperpolarization by activation of Ca(2+)-dependent K+ current. The increase in [Ca2+]i by TBT may be related to its cytotoxic action on thymocytes.
Article
Azole antifungals (e.g. the imida-zoles: miconazole, clotrimazole, bifona-zole, imazalil, ketoconazole, and the tria-zoles: diniconazole, triadimenol, propico-nazole, fluconazole and itraconazole) inhibit in fungal cells the 14α-demethylation of lanosterol or 24–methylenedihydro-lanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-45014DM) of the endo-plasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 × 10-8 M. Complete inhibition of this synthesis by fluconazole is obtained at 10-5 M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Cundida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10-5 M the P-450–dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 × 106 M of the bis-triazole derivative fluconazole. The overall results show that both the affinity for the fungal P-45014DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdro-phobic nonligating portion form the basis for itraconazole's potency and selectivity.
Article
Mechanism of action of azole antifungal agents was studied by analyzing interaction of ketoconazole, itraconazole, triadimefon and triadimenol with a purified yeast cytochrome P-450 which catalyzes lanosterol 14 alpha-demethylation (P-45014DM). These antifungal agents formed low-spin complexes with P-45014DM, indicating the interaction of their azole nitrogens with the heme iron. Affinity of these antifungal agents for the cytochrome was extremely high compared with usual nitrogenous ligands. Upon reduction with sodium dithionite, the azole complexes of ferric P-45014DM were converted to the corresponding ferrous derivatives. Spectral analysis of these complexes suggested that geometric orientation of the azole moiety of an antifungal agent to the ferrous heme iron was regulated by the interaction between the N-1 substituent and the heme environment. CO could not readily replace ketoconazole or itraconazole co-ordinating to the heme iron of ferrous P-45014DM while triadimefon and triadimenol complexes of the cytochrome were promptly converted to the CO complexes. The inhibitory effects of ketoconazole and itraconazole on the P-45014DM-dependent lanosterol 14 alpha-demethylation were higher than that of triadimenfon. The substituents at N-1 of the azole moieties of ketoconazole and itraconazole are extremely large while those of triadimefon and triadimenol are relatively small. Accordingly, observations described above suggest that the N-1 substituent of an azole antifungal agent regulates the mobility of the molecule in the heme crevice of ferrous P-45014DM and determines the inhibitory effect of the compound.
Article
Effects of amyloid beta-protein fragment 25-35, A beta P(25-35), on the membrane permeability of organic molecules were examined in the brain neurons dissociated from rats by using an argon laser (equipped in flow cytometer and laser microscope) and a combination of two fluorescent dyes, fluo-3-AM and ethidium bromide. A beta P(25-35) at concentrations of 1 microM or greater induced both leakage of fluo-3 from the neurons and permeation of ethidium across the membrane in a dose-dependent manner, although both dyes are highly impermeant to the intact plasma membrane. Thus, A beta P(25-35) seems to increase not only membrane permeability of inorganic ions such as Ca2+, Na+ and K+, as previously suggested, but also that of organic molecules. Therefore, the brain neuron membrane is suggested to lose its integrity in the presence of A beta P(25-35) that leads to neuronal death.
Article
Clotrimazole (CLT), a member of the antifungal imidazole family of compounds, has been found to inhibit both calcium (Ca2+)-activated 86Rb and potassium (K) fluxes of human red cells and to inhibit red cell binding of 125I-charybdotoxin (ChTX) [11]. We have now used patch-clamp techniques to demonstrate reversible inhibition of whole cell KCa2+ currents in murine erythroleukemia (MEL) cells by submicromolar concentrations of CLT. Inhibition was equivalent whether currents were elicited by bath application of the Ca2+ ionophore A23187 or by dialyzing cells with a pipette solution containing micromolar concentrations of free Ca2+. The extent of inhibition of whole cell MEL KCa2+ currents was voltage-dependent, decreasing with increasing test potential. We also determined the single channel basis of the CLT inhibition in MEL cells by demonstrating the inhibition of a calcium-activated, ChTX-sensitive K channel by CLT in outside-out patches. The channel was also blocked by the des-imidazolyl metabolite of CLT, 2-chlorophenyl-bisphenyl-methanol (MET II) [15], thus demonstrating that the imidazole ring is not required for the inhibitory action of CLT. Single KCa2+ channels were also evident in inside-out patches of MEL cells. Block of K current by CLT was not unique to MEL cells. CLT also inhibited a component of the whole cell K current in PC12 cells. Channel specificity of block by CLT was determined by examining its effects on other types of voltage-sensitive currents. CLT block showed the following rank order of potency: K currents in PC12 cells > Ca2+ currents in PC12 cells > Na currents in sympathetic neurons. These results demonstrate that direct inhibition of single KCa2+ by CLT can be dissociated from inhibition of cytochrome P-450 in MEL cells.
Article
In the present paper the effects of antimycotics with imidazole structure on the activity of various ion currents of mouse pancreatic B-cells and insulin secretion from isolated islets have been studied. Clotrimazole (0.1-10 microM, bath solution without albumin) reversibly inhibited the whole-cell K + ATP current studied with the patch-clamp technique and concomitantly depolarized the membrane potential. Two other structurally related compounds, econazole and ketoconazole, exhibited similar effects on the whole-cell K + ATP current. Clotrimazole also inhibited the current through single K + ATP channels measured in the inside-out configuration. According to these results it seems unlikely that a cytoplasmic factor is involved in the action of clotrimazole on K + ATP currents. Clotrimazole (10 microM) also reduced the current through voltage-dependent Ca2+ and K+ channels and altered inactivation kinetics. Moreover, clotrimazole reversibly abolished a recently described inward current which is induced by hypotonic cell swelling. The results show that clotrimazole altered the activity of all ion currents in B-cells investigated in this study. Clotrimazole (3-100 microM, solution with albumin) irreversibly inhibited insulin secretion from isolated islets. With econazole and ketoconazole similar effects on hormone release were observed. The changes in the activity and kinetics of voltage-dependent Ca2+ and K+ currents are likely to contribute to the observed inhibition of insulin secretion. However, we cannot entirely rule out that imidazole antimycotics also interfere with a step in stimulus-secretion coupling distal to changes in membrane potential.
Article
The ionic mechanism of clotrimazole, an imidazole antimycotic P-450 inhibitor, was examined in rat anterior pituitary GH3 cells. In perforated-patch whole-cell recording experiments, clotrimazole reversibly caused an inhibition of the Ca2+-activated K+ current in a dose-dependent manner. The IC50 value of the clotrimazole-induced inhibition of I(K(Ca)) was 3 microM. In the outside-out configuration of single channel recording, application of clotrimazole (10 microM) into the bath medium did not change the single channel conductance of large conductance Ca2+-activated K+(BK(Ca)) channels, but it suppressed the channel activity significantly. The change in the kinetic behavior of BK(Ca) channels caused by clotrimazole in these cells is found to be due to a decrease in mean open time and an increase in mean closed time. Other structurally distinct P-450 inhibitors (e.g. ketoconazole or econazole) also effectively suppressed the amplitude of I(K(Ca)). Clotrimazole (10 microM) blocked both the inactivating and non-inactivating components of the voltage-dependent K+ outward current (I(K(V))), but it produced a slight reduction of L-type Ca2+ inward current (I(Ca,L)) without altering the current-voltage relationship of I(Ca,L). Clotrimazole (10 microM) also increased the firing rate of action potentials. These results provide direct evidence that clotrimazole is capable of suppressing the activity of BK(Ca) channel in GH3 cells. Because of the non-selective inhibitory effect of clotrimazole on I(K(Ca)) and I(K(V)), this inhibition is mainly, if not entirely, due to a direct channel blockade. Thus, the present study implies that the blockade of these ionic channels by clotrimazole would affect hormonal secretion and neuronal excitability.
Article
The effect of clotrimazole on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca2+ indicator. Clotrimazole (1-30 microM) induced a concentration-dependent [Ca2+]i increase. The [Ca2+]i increase comprised an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals by reducing both the initial rise and the decay phase, indicating that clotrimazole triggered both Ca2+ influx and Ca2+ release. Pretreatment with 30 microM clotrimazole in Ca2+-free medium abolished the Ca2+ release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, and conversely, pretreatment with thapsigargin prevented clotrimazole from releasing more Ca2+. This suggests that the thapsigargin-sensitive Ca2+ store is the source of clotrimazole-induced Ca2+ release. Clotrimazole (10 microM) triggered Mn2+ quench of fura-2 fluorescence which was partly inhibited by 1 mM La3+. Addition of 3 mM Ca2+ induced a [Ca2+]i increase after preincubation with 10 microM clotrimazole in Ca2+-free medium, indicating that clotrimazole activated capacitative Ca2+ entry. However, 10 and 30 microM clotrimazole inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry by 21% and 74%, respectively. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 30 microM clotrimazole-induced Ca2+ release by 51%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This implies that clotrimazole induces Ca2+ release in an IP3-independent manner, which could be modulated by phospholipase A2-coupled events.
Article
Immunosuppressive therapy has limited activity against the mesenchymal cell proliferation of obliterative bronchiolitis. Clotrimazole (CLT) has been shown to inhibit proliferation in normal and cancer cell lines. Here we investigate whether CLT inhibits the proliferation of lung mesenchymal cells. Proliferation of human lung fibroblasts (MRC-5) in the presence of CLT was determined by [3H]thymidine incorporation. Messenger ribonucleic acid (mRNA) expression of platelet-derived growth factor (PDGF)-B and transforming growth factor (TGF)-beta after treatment with CLT was measured by reverse transcriptase-polymerase chain reaction. Treatment of MRC-5 cells with CLT resulted in a significant reduction in proliferation as assessed by DNA incorporation and cell counts compared with dimethylsulfoxide alone. There was no cytotoxic effect associated with CLT treatment. Reverse transcriptase-polymerase chain reaction demonstrated a marked decrease in PDGF-B and TGF-beta mRNA levels in cells treated with CLT compared with those treated with dimethylsulfoxide. CLT inhibits proliferation of human lung fibroblasts. This inhibitory effect is associated with decreased levels of PDGF-B and TGF-beta mRNA expression and may have value in the prevention and treatment of obliterative bronchiolitis.
Article
The mechanism of Cd2+ neurotoxicity, which is considered to be secondary to changes in blood vessels, was re-evaluated in dissociated mesencephalic trigeminal (Me5) neurons of the adult rat. Cd2+ induced morphological changes in Me5 neurons at 0.1 and 1 mM but not at 0.01 mM. The changes appeared predominantly in the cytoplasm: destruction of the cytoplasmic organelles, swelling and vacuolization of the cell body, and finally resulted in cell lysis. These observations indicate necrosis rather than apoptosis, and no sign of degraded nuclear DNA, characteristic to apoptosis, was detected by the TUNEL technique. Using a Ca2+-sensitive dye Indo-1, Cd2+ was found to elevate the intracellular Ca2+ concentration [Ca2+](i) (both in the cytoplasm and the nucleus). Both the elevation in [Ca2+](i) and the morphological alteration were inhibited either by removing Ca2+-from the bathing medium or by the application of BAPTA/AM (10 microM), a membrane-permeable intracellular Ca2+ chelator. Furthermore, neither morphological changes nor elevation in [Ca2+](i) by Cd2+ occurred in the presence of Zn2+. It is concluded that (1) Cd2+ can directly affect nerve cells, (2) toxicity of Cd2+ on Me5 neurons is mediated by continuous elevation in [Ca2+](i), (3) Cd2+ induces necrotic cell death, and (4) Cd2+ neurotoxicity can be antagonized by Zn2+.
Article
Cadmium (Cd) is a well-known environmental carcinogen and immunotoxin. Currently the direct cytotoxic effects of Cd on thymocytes are largely unexplored. The main objective of the present study was to investigate the apoptogenic property of Cd and the mechanisms involved, using primary cultured mouse thymocytes as a model. Cd-induced apoptosis in thymocytes was studied by TdT-mediated dUTP nick end-labeling assay and DNA gel electrophoresis. The results showed that Cd was able to cause apoptosis in mouse thymocytes in a time- and dose-dependent manner. Moreover, Cd exposure led to a rapid and sustained intracellular calcium (Ca2+) elevation, followed by caspase-3 activation and PARP cleavage, all of which preceded the characteristic DNA fragmentation. BAPTA-AM, a specific intracellular Ca2+ chelator, abolished Cd-induced Ca2+ overloading and subsequently inhibited caspase-3 activation, PARP cleavage, and apoptosis. It is believed that intracellular Ca2+ elevation may trigger caspase-3 activation either through mitochondria or through activation of Ca2+-dependent protease in Cd-treated thymocytes. Results from this study thus provide new information for a better understanding of the immunotoxic and immunomodulatory effects of Cd.
Article
Pretreatment with 10 microM of the antifungal drug clotrimazole potently reduced the death of cultured rat cerebellar granule cells induced by oxygen/glucose deprivation, and the excitotoxic effect of glutamate on cultured hippocampal neurons and cerebellar granule cells. In patch-clamped hippocampal pyramidal neurons, 10-50 microM clotrimazole caused a decrease in the amplitude of N-methyl-D-aspartate (NMDA) receptor-mediated currents. Glutamate induced intracellular Ca(2+) overload, as measured by Fluo-3 confocal fluorescence imaging, while clotrimazole reduced Ca(2+) overload and promoted the recovery of intracellular calcium homeostasis after glutamate treatment. Using tetramethylrhodamine ethyl ester fluorescence as a marker of mitochondrial membrane potential we found that clotrimazole prevented the glutamate-induced loss of mitochondrial membrane potential. Our data provide evidence that the protective effect of clotrimazole against oxygen/glucose deprivation and excitotoxicity is due to the ability of this drug to partially block NMDA receptor-gated channel, thus causing both reduced calcium overload and lower probability of the mitochondrial potential collapse.
Article
Glycolysis is known to be the primary energy source in most cancer cells. We investigated here the effect of clotrimazole (1-(alpha-2-chlorotrityl)imidazole), the antifungal azole derivative, which was recently recognized as calmodulin antagonist, on the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis, and on ATP content and cell viability in LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. We found that clotrimazole induced a significant, dose- and time-dependent reduction in the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP, and cell viability. These findings suggest that clotrimazole causes a reduction in glycolysis and ATP levels, which eventually leads to cell destruction after 3 h of treatment. Since cell proliferation was also reported to be inhibited by calmodulin antagonists, this substance is most promising agent in treatment of cancer by inhibiting both cell proliferation and the glycolytic supply of ATP required for cancer cell growth.
Article
Several types of aggressive cancers, including hepatocellular carcinoma (HCC), often arise as a multifocal primary tumor. This suggests a high rate of premalignant changes in noncancerous tissue before the formation of a solitary tumor. Examination of the messenger RNA expression profiles of tissue samples derived from patients with cirrhosis of various etiologies by complementary DNA (cDNA) microarray indicated that they can be grossly separated into two main groups. One group included hepatitis B and C virus infections, hemochromatosis, and Wilson's disease. The other group contained mainly alcoholic liver disease, autoimmune hepatitis, and primary biliary cirrhosis. Analysis of these two groups by the cross-validated leave-one-out machine-learning algorithms revealed a molecular signature containing 556 discriminative genes (P <.001). It is noteworthy that 273 genes in this signature (49%) were also significantly altered in HCC (P <.001). Many genes were previously known to be related to HCC. The 273-gene signature was validated as cancer-associated genes by matching this set to additional independent tumor tissue samples from 163 patients with HCC, 56 patients with lung carcinoma, and 38 patients with breast carcinoma. From this signature, 30 genes were altered most significantly in tissue samples from high-risk individuals with cirrhosis and from patients with HCC. Among them, 12 genes encoded secretory proteins found in sera. In conclusion, we identified a unique gene signature in the tissue samples of patients with cirrhosis, which may be used as candidate markers for diagnosing the early onset of HCC in high-risk populations and may guide new strategies for chemoprevention. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Article
Iron contributes to brain injury after intracerebral hemorrhage (ICH). Because ICH may occur in the context of iron deficiency anemia (IDA), a common nutritional disorder, the purpose of this study was to determine whether IDA in rats affects brain edema, functional behavior, and changes in brain iron-handling proteins after ICH. Six-week-old male rats (n=75) were randomized to non-IDA or IDA groups and provided iron-sufficient or -deficient diets, respectively. After 1 month, 100 microL autologous blood was infused into the right basal ganglia (BG). Brains removed at days 1, 3, 7, and 28 after ICH were assessed for regional brain water content and BG transferrin and transferrin receptor concentrations (Western blotting). Sensorimotor measures of functional recovery were assessed. Brain water content was increased for IDA versus non-IDA in injured cortex and BG at day 3 (P<0.05). IDA rats had impaired left forepaw placing and more asymmetric forelimb use versus non-IDA after ICH (P<0.05). Transferrin and transferrin receptor concentrations in the BG were increased for IDA versus non-IDA within the first week (P<0.05). Rats with IDA have greater brain edema, poorer sensorimotor outcome, and a greater expression of iron regulatory proteins than non-IDA rats after ICH, suggesting brain iron status is a determinant of injury severity and recovery.
Article
In order to examine the cadmium cytotoxicity unrelated to external Ca(2+), the effects of micromolar CdCl(2) on intracellular Cd(2+) concentration, cellular content of glutathione, and cell viability of rat cerebellar granule neurons were examined under normal Ca(2+) and external Ca(2+)-free conditions, using a laser confocal microscope with fluorescent probes, fluo-3-AM, 5-chloromethylfluorescein (CMF) diacetate, and propidium iodide. CdCl(2) (10-300 microM) dose-dependently increased the intensity of fluo-3 fluorescence. Exposure to CdCl(2) equally enhanced the fluo-3 fluorescence under both Ca(2+) conditions and MnCl(2) did not quench the CdCl(2)-enhanced fluorescence. The results indicate that the enhancement of fluo-3 fluorescence is due to the increase in intracellular Cd(2+) concentration. CdCl(2) at 100-300 microM decreased the intensity of CMF fluorescence, indicating the decrease in cellular content of glutathione. The population of cells stained with propidium (dead cells) was increased by 100-300 microM CdCl(2). Similar results described above were also observed under external Ca(2+)-free condition. It is suggested that some of cytotoxic actions of CdCl(2) on neurons are unrelated to external Ca(2+), one of main sources for increasing intracellular Ca(2+) concentration.
Article
Iron overload occurs in brain after intracerebral hemorrhage (ICH). Deferoxamine, an iron chelator, attenuates perihematomal edema and oxidative stress in brain after ICH. We investigated the effects of deferoxamine on cerebrospinal fluid (CSF) free iron and brain total iron following ICH. Rats received an infusion of 100-µL autologous whole blood into the right basal ganglia, then were treated with either deferoxamine (100 mg/kg, i.p., administered 2 hours after ICH and then at 12-hour intervals for up to 7 days) or vehicle. The rats were killed at different time points from 1 to 28 days for measurement of free and total iron. Behavioral tests were also performed. Free iron levels in normal rat CSF were very low (1.1±0.4 µmol). After ICH, CSF free iron levels were increased at all time points. Levels of brain total iron were also increased after ICH (p<0.05). Deferoxamine given 2 hours after ICH reduced free iron in CSF at all time points. Deferoxamine also reduced ICH-induced neurological deficits (p<0.05), but did not reduce total brain iron. In conclusion, CSF free iron levels increase after ICH and do not clear for at least 28 days. Deferoxamine reduces free iron levels and improves functional outcome in the rat, indicating that it may be a potential therapeutic agent for ICH patients.
Article
We examined a possible neuroprotective effect of clotrimazole on spinal cord clip compression injury. Rivlin and Tator's acute extradural clip compression injury (CCI) model was used for producing SCI on 24 albino Wistar rats weighing 180-250 g. All rats were anesthetized with 30 mg/kg ketamine HCl intraperitoneally and were breathing spontaneously without tracheal intubation. Total laminectomy of T8-T12 was performed on all rats under operation microscope, and CCI was performed on all rats (expect those in group 1) with a 50-g closing force aneurysm clip for 1 min. Three hours later, all of the rats were killed with sodium pentobarbital. Spinal cords were excised for a length of 2 cm; 1 cm rostrally and caudally to the injury site and deep frozen at -76 degrees C for biochemical studies. Treatment with clotrimazole decreased MDA levels in rats with SCI with a statistically significant difference. To our knowledge, this the first study that shows the effects of clotrimazole on spinal cord clip compression injury. Clotrimazole was found to be effective on spinal cord clip compression injury, but further investigations are mandatory.
Article
We have examined the effects of glucose at high concentrations on the process of cell death induced by excessive increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) or oxidative stress in rat lymphocytes. The cell death elicited by the excessive increase in [Ca(2+)](i) seemed to be induced by an activation of Ca(2+)-dependent K(+) channels because the inhibitors for Ca(2+)-dependent K(+) channels attenuated the decrease in cell viability. Glucose at 30-50mM augmented the decrease in cell viability by the excessive increase in [Ca(2+)](i). It was not specific for glucose because it was the case for sucrose or NaCl, suggesting an involvement of increased osmolarity in adverse action of glucose. On the contrary, glucose protected the cells suffering from oxidative stress induced by H(2)O(2), one of reactive oxygen species. It was also the case for fructose or sucrose, but not for NaCl. The process of cell death induced by H(2)O(2) started, being independent from the presence of glucose. Glucose delayed the process of cell death induced by H(2)O(2). Sucrose and fructose also protected the cells against oxidative stress. The reactivity of sucrose to reactive oxygen species is lower than those of glucose and fructose. The order in the reactivity cannot explain the protective action of glucose. Glucose at high concentrations exerts reciprocal actions on the process of cell death induced by the oxidative stress and excessive increase in [Ca(2+)](i).
Article
Since clotrimazole, known as an antifungal drug, exerts diverse actions on cellular functions, it is expected that clotrimazole can be used for other purposes. This antifungal drug protects the cells overloaded with Ca(2+) by A23187, a calcium ionophore. Therefore, the agent may prevent the cells from death induced by heavy metals such as CdCl(2), PbCl(2), or HgCl(2) that are respectively proposed to increase intracellular Ca(2+) concentration. To test this possibility, we have examined the effect of clotrimazole on the cells simultaneously treated with CdCl(2), PbCl(2), or HgCl(2) using rat thymocytes and a flow cytometer with fluorescent probes. The simultaneous application of clotrimazole and CdCl(2) significantly decreased cell viability, even though the concentrations of both were ineffective at affecting the viability. The significant decrease in cell viability was not due to the inhibition of Ca(2+)-ATPase and Ca(2+)-dependent K(+) channels that were induced by clotrimazole. The simultaneous application increased the population of cells with phosphatidylserine exposed on membrane surface, indicating the change in asymmetrical distribution of membrane phospholipids. Furthermore, the cytotoxicity induced by the combination of clotrimazole and CdCl(2) under nominally Ca(2+)-free condition was more profound than that under normal Ca(2+) condition. Therefore, the membrane may be a target for the cytotoxic action of clotrimazole and CdCl(2) that were simultaneously applied. It is also the case for PbCl(2), but not the case for HgCl(2). It is concluded that clotrimazole can modulate the cytotoxicity of some heavy metals.
Article
In our previous study, the application of clotrimazole, an antifungal drug, with CdCl(2) or PbCl(2) significantly increased cell lethality of rat thymocytes, even though their individual concentrations were ineffective in affecting the viability. This observation prompted us to study the case for the combination of clotrimazole and ZnCl(2) because the use of zinc as a nutritional supplement has become common. Their combination induced very potent cytotoxic action on rat thymocytes with "bell-shape" dose-response relation. An acceleration of apoptotic process by the combination was suggested for the mechanism. The present result may provide a new insight into toxicological characteristics of clotrimazole.