BMP7, a Putative Regulator of Epithelial Homeostasis in the Human Prostate, Is a Potent Inhibitor of Prostate Cancer Bone Metastasis in Vivo

Department of Urology, Leiden University Medical Center, J3-100, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
American Journal Of Pathology (Impact Factor: 4.59). 10/2007; 171(3):1047-57. DOI: 10.2353/ajpath.2007.070168
Source: PubMed


Bone morphogenic protein 7 (BMP7) counteracts physiological epithelial-to-mesenchymal transition, a process that is indicative of epithelial plasticity. Because epithelial-to-mesenchymal transition is involved in cancer, we investigated whether BMP7 plays a role in prostate cancer growth and metastasis. BMP7 expression in laser-microdissected primary human prostate cancer tissue was strongly down-regulated compared with normal prostate luminal epithelium. Furthermore, BMP7 expression in prostate cancer cell lines was inversely related to tumorigenic and metastatic potential in vivo and significantly correlated to E-cadherin/vimentin ratios. Exogenous addition of BMP7 to human prostate cancer cells dose-dependently inhibited transforming growth factor beta-induced activation of nuclear Smad3/4 complexes via ALK5 and induced E-cadherin expression. Moreover, BMP7-induced activation of nuclear Smad1/4/5 signaling transduced via BMP type I receptors was synergistically stimulated in the presence of transforming growth factor beta, a growth factor that is enriched in the bone microenvironment. Daily BMP7 administration to nude mice inhibited the growth of cancer cells in bone. In contrast, no significant growth inhibitory effect of BMP7 was observed in intraprostatic xenografts. Collectively, our observations suggest that BMP7 controls and preserves the epithelial phenotype in the human prostate and underscore a decisive role of the tumor microenvironment in mediating the therapeutic response of BMP7. Thus, BMP7 can still counteract the epithelial-to-mesenchymal transition process in the metastatic tumor, positioning BMP7 as a novel therapeutic molecule for treatment of metastatic bone disease.

Download full-text


Available from: Jeroen Buijs
  • Source
    • "The overall effect would hinder a vicious cycle of co-stimulation within the tumor microenvironment as a result of crosstalk between the invading prostate cancer cells and bone cells. Our results show that curcumin is able to interfere with this cross talk by up-regulating the bone morphogenic protein-7 which is shown to be anti-metastatic [34]. These findings pave the way to a translational approach to inhibit prostate cancer bone metastases in advanced cancer patients in a natural and non-toxic manner. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.
    Full-text · Article · Apr 2014 · Journal of Cancer Therapy
  • Source
    • "TGF-β/bone morphogenetic protein (BMP) signaling between bone stromal cells and PC cells at bone niches also mediates the balance between the dormancy of PC cells and metastasis [34]. Secreted from bone stromal cells, BMP7 interacts with the BMP receptor 2 of PC cells; this interaction activates p38, p21, and NDRG1, thereby inducing dormancy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In past decades, cancer patient survival has been improved with earlier detection and advancements in therapy. However, many patients who exhibit no clinical symptoms after frontline therapy subsequently suffer, often many years later, aggressive tumor recurrence. Cancer recurrence represents a critical clinical challenge in effectively treating malignancies and for patients' quality of life. Tumor cell dormancy may help to explain treatment resistance and recurrence or metastatic reactivation. Understanding the dormant stage of tumor cells may help in discovering ways to maintain the dormant state or permanently eliminate dormant residual disseminated tumor cells. Over the past decade, numerous studies indicate that various mechanisms of tumor dormancy exist, including cellular dormancy (quiescence), angiogenic dormancy, and immunologic dormancy. In this short review, we summarize recent experimental and clinical evidence for these three mechanisms and other possible tumor microenvironment mechanisms that may influence tumor dormancy.
    Full-text · Article · Oct 2013
  • Source
    • "The positive influence of WISP1 on BMP-2 could therefore be part of the molecular underpinnings related to increased PC3-Luc metastasis in mice that have increased bone turnover induced by intermittent application of PTH [23]. BMP-7 has also been implicated to control prostate cancer growth and spread, however, its potential relationship to WISP1 remains to be clarified [44], [45]. One other factor that may be connected to WISP1 function is vitamin D3 an agent known to be beneficial to bone and in reducing cancer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PC) is a leading cause of death in men however the factors that regulate its progression and eventual metastasis to bone remain unclear. Here we show that WISP1/CCN4 expression in prostate cancer tissues was up-regulated in early stages of the disease and, further, that it correlated with increased circulating levels of WISP1 in the sera of patients at early stages of the disease. WISP1 was also elevated in the mouse prostate cancer model TRAMP in the hypoplastic diseased tissue that develops prior to advanced carcinoma formation. When the ability of anti-WISP1 antibodies to reduce the spread of PC3-Luc cells to distant sites was tested it showed that twice weekly injections of anti-WISP1 antibodies reduced the number and overall size of distant tumors developed after intracardiac (IC) injection of PC3-Luc cells in mice. The ability of antibodies against WISP1 to inhibit growth of PC3-Luc cancer cells in mice was also evaluated and showed that twice weekly injections of anti-WISP1 antibodies reduced local tumor growth when examined in xenografts. To better understand the mechanism of action, the migration of PC3-Luc cells through membranes with or without a Matrigel™ barrier showed the cells were attracted to WISP1, and that this attraction was inhibited by treatment with anti-WISP1 antibodies. We also show the expression of WISP1 at the bone-tumor interface and in the stroma of early grade cancers suggested WISP1 expression is well placed to play roles in both fostering growth of the cancer and its spread to bone. In summary, the up-regulation of WISP1 in the early stages of cancer development coupled with its ability to inhibit spread and growth of prostate cancer cells makes it both a potential target and an accessible diagnostic marker for prostate cancer.
    Full-text · Article · Aug 2013 · PLoS ONE
Show more