Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes

Institute for Genomic Research, J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Science (Impact Factor: 33.61). 10/2007; 317(5845):1753-6. DOI: 10.1126/science.1142490
Source: PubMed


Although common among bacteria, lateral gene transfer—the movement of genes between distantly related organisms—is thought
to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined
host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that
range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some
of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into
eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.

Download full-text


Available from: Shiliang Wang
  • Source
    • "HGT is rampant among prokaryotes and phages and is an important mechanism for acquisition of new genes and functions (Popa and Dagan, 2011), including the shuttling of antibiotics and antibiotic resistance between bacteria (Clardy et al., 2009). Instances of interdomain horizontal transfer of diverse genes between two domains of life or between viruses and their hosts are also increasingly documented (Nelson et al., 1999; Husnik et al., 2013; Dunning Hotopp et al., 2007; Wu et al., 2013; Gladyshev et al., 2008; Bratke and McLysaght, 2008; Danchin et al., 2010). While a minority of these transfers have been functionally investigated, the biological activity, selective advantages, and ecological contexts of many interdomain HGT events remain poorly characterized (Dunning Hotopp 2011, Keeling and Palmer, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Though horizontal gene transfer (HGT) is widespread, genes and taxa experience biased rates of transferability. Curiously, independent transmission of homologous DNA to archaea, bacteria, eukaryotes, and viruses is extremely rare and often defies ecological and functional explanations. Here, we demonstrate that a bacterial lysozyme family integrated independently in all domains of life across diverse environments, generating the only glycosyl hydrolase 25 muramidases in plants and archaea. During coculture of a hydrothermal vent archaeon with a bacterial competitor, muramidase transcription is upregulated. Moreover, recombinant lysozyme exhibits broad-spectrum antibacterial action in a dose-dependent manner. Similar to bacterial transfer of antibiotic resistance genes, transfer of a potent antibacterial gene across the universal tree seemingly bestows a niche-transcending adaptation that trumps the barriers against parallel HGT to all domains. The discoveries also comprise the first characterization of an antibacterial gene in archaea and support the pursuit of antibiotics in this underexplored group. DOI: http://dx.doi.org/10.7554/eLife.04266.001
    Full-text · Article · Nov 2014 · eLife Sciences
  • Source
    • "This is mostly due to the fact that LGT has to occur, at least in sexually reproducing animals, in the germ cells to be transmitted to the next generation and be stabilized in the population (Robinson et al., 2013). However, recently these events are identified more frequently, especially in invertebrates (Boto, 2012), some of which are tightly associated with the germline-transmitted bacterial endosymbiont Wolbachia (Dunning Hotopp et al., 2007). By modifying an organisms DNA, LGT provides a source of selectable genetic variation over time in addition to base pair mutations, recombination, insertions, deletions, etc., and may therefore act as an effective driver of co-evolution, especially on longer evolutionary time scales. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.
    Full-text · Article · Oct 2014 · Frontiers in Cellular and Infection Microbiology
  • Source
    • "Notably, both eukaryotic sequences are present in nuclear genomes, whereas their mitochondria encode a typical mitochondrial cyt b (YP_203382 and YP_001031207, respectively ). These cases would indicate interdomain horizontal gene transfer between bacteria and metazoa (Dunning Hotopp et al. 2007 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Quinol oxidation in the catalytic Qo site of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism which laid the ground for Mitchell's chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron-sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically-specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus-Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
    Full-text · Article · Jul 2014 · Genome Biology and Evolution
Show more