Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood

. Stem Cell Institute and Department of Medicine, University of Minnesota, Translational Research Facility, 2001 6th St SE, Minneapolis, MN 55455, USA.
Blood (Impact Factor: 10.45). 02/2008; 111(1):122-31. DOI: 10.1182/blood-2007-04-084186
Source: PubMed


Human embryonic stem cells (hESCs) provide an important means to effectively study soluble and cell-bound mediators that regulate development of early blood and endothelial cells in a human model system. Here, several complementary methods are used to demonstrate canonical Wnt signaling is important for development of hESC-derived cells with both hematopoietic and endothelial potential. Analyses using both standard flow cy-tometry, as well the more detailed high-throughput image scanning flow cytometry, characterizes sequential development of distinct early developing CD34(bright)CD31(+)Flk1(+) cells and a later population of CD34(dim)CD45(+) cells. While the CD34(bright)CD31(+)Flk1(+) have a more complex morphology and can develop into both endothelial cells and hematopoietic cells, the CD34(dim)CD45(+) cells have a simpler morphology and give rise to only hematopoietic cells. Treatment with dickkopf1 to inhibit Wnt signaling results in a dramatic decrease in development of cells with hematoendothelial potential. In addition, activation of the canonical Wnt signaling pathway in hESCs by coculture with stromal cells that express Wnt1, but not use of noncanonical Wnt5-expressing stromal cells, results in an accelerated differentiation and higher percentage of CD34(bright)CD31(+)Flk1(+) cells at earlier stages of differentiation. These studies effectively demonstrate the importance of canonical Wnt signaling to mediate development of early hematoendothelial progenitors during human development.

Download full-text


Available from: Randall T Moon
  • Source
    • "We tested a wide range of culture conditions involving stimulation with major determinants of endothelial fate, including varying the timing and concentrations of VEGF, BMP4, CHIR-99021 and FGF, based on previous studies describing endothelial differentiation from PSCs (Kennedy et al., 2007, 2012; Choi et al., 2012; Rafii et al., 2013; White et al., 2013) (supplementary material Fig. S7; data not shown). Studies from our lab and others have established a role for Wnt/β-catenin signaling in specifying endothelial commitment (Woll et al., 2008; Palpant et al., 2013; Sturgeon et al., 2014). We observed, however, that addition of the small molecule Wnt/β-catenin agonist CHIR-99021 between days 2 and 5 inhibited endothelial fate specification, indicating that other factors involved in the specification of endothelium tightly orchestrate the dosage of Wnt/β-catenin signaling (supplementary material Fig. S7). "
    [Show abstract] [Hide abstract]
    ABSTRACT: During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/β-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate choices in vitro. Varying doses of activin A and BMP4 to mimic cytokine gradient polarization in the anterior-posterior axis of the embryo led to differential activity of Wnt/β-catenin signaling and specified distinct anterior-like (high activin/low BMP) and posterior-like (low activin/high BMP) mesodermal populations. Cardiogenic mesoderm was generated under conditions specifying anterior-like mesoderm, whereas blood-forming endothelium was generated from posterior-like mesoderm, and vessel-forming CD31(+) endothelial cells were generated from all mesoderm origins. Surprisingly, inhibition of β-catenin signaling led to the highly efficient respecification of anterior-like endothelium into beating cardiomyocytes. Cardiac respecification was not observed in posterior-derived endothelial cells. Thus, activin/BMP gradients specify distinct mesodermal subpopulations that generate cell derivatives with unique angiogenic, hemogenic and cardiogenic properties that should be useful for understanding embryogenesis and developing therapeutics. © 2015. Published by The Company of Biologists Ltd.
    Full-text · Article · Jul 2015 · Development
  • Source
    • "Schematic representation for the generation of human ESC/iPSC-derived NK cells is shown. Summary of several protocols described in Ref. (100, 101, 104, 111, 129–132). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK-cell biology field and in deciphering how NK-cell function is regulated, is driving efforts to utilize NK-cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK-cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, which adds another tool to the expanding NK-cell-based cancer immunotherapy arsenal.
    Full-text · Article · Sep 2014 · Frontiers in Immunology
  • Source
    • "Cardiac progenitor induction is achieved by removal of the TGF-β pathway activators and addition of the growth factors, fibroblast growth factor-2 and/or vascular endothelial growth factor, which activate the ERK signaling pathway [80], or by small molecules that inhibit WNT signaling (for example, KY02111, XAV939, IWP-2 and IWR-1). As these factors drive mesodermal cells towards the cardiac progenitor lineage, they inhibit the development of smooth muscle and endothelial cell lineages [32,50]. A common finding in this stage is that the addition of insulin inhibits the cardiac progenitor differentiation process [49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cell (hPSC)-derived cardiomyocytes have attracted attention as an unlimited source of cells for cardiac therapies. One of the factors to surmount to achieve this is the production of hPSC-derived cardiomyocytes at a commercial or clinical scale with economically and technically feasible platforms. Given the limited proliferation capacity of differentiated cardiomyocytes and the difficulties in isolating and culturing committed cardiac progenitors, the strategy for cardiomyocyte production would be biphasic, involving hPSC expansion to generate adequate cell numbers followed by differentiation to cardiomyocytes for specific applications. This review summarizes and discusses up-to-date two-dimensional cell culture, cell-aggregate and microcarrier-based platforms for hPSC expansion. Microcarrier-based platforms are shown to be the most suitable for up-scaled production of hPSCs. Subsequently, different platforms for directing hPSC differentiation to cardiomyocytes are discussed. Monolayer differentiation can be straightforward and highly efficient and embryoid body-based approaches are also yielding reasonable cardiomyocyte efficiencies, whereas microcarrier-based approaches are in their infancy but can also generate high cardiomyocyte yields. The optimal target is to establish an integrated scalable process that combines hPSC expansion and cardiomyocyte differentiation into a one unit operation. This review discuss key issues such as platform selection, bioprocess parameters, medium development, downstream processing and parameters that meet current good manufacturing practice standards.
    Full-text · Article · Jan 2014 · Stem Cell Research & Therapy
Show more