Prospects for neural stem cell-based therapies for neurological diseases

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Neurotherapeutics (Impact Factor: 5.05). 11/2007; 4(4):701-14. DOI: 10.1016/j.nurt.2007.08.005
Source: PubMed


Neural stem and progenitor cells have great potential for the treatment of neurological disorders. However, many obstacles remain to translate this field to the patient's bedside, including rationales for using neural stem cells in individual neurological disorders; the challenges of neural stem cell biology; and the caveats of current strategies of isolation and culturing neural precursors. Addressing these challenges is critical for the translation of neural stem cell biology to the clinic. Recent work using neural stem cells has yielded novel biologic concepts such as the importance of the reciprocal interaction between neural stem cells and the neurodegenerative environment. The prospect of using transplants of neural stem cells and progenitors to treat neurological diseases requires a better understanding of the molecular mechanisms of both neural stem cell behavior in experimental models and the intrinsic repair capacity of the injured brain.

Download full-text


Available from: Jaime Imitola, Mar 08, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurons in dorsal root ganglia (DRGs) transmit sensory information from peripheral tissues to the spinal cord. This pathway can be interrupted, for example, as the result of physical violence, traffic accidents, or complications during child delivery. As a consequence, the patient permanently loses sensation and often develops intractable neuropathic pain in the denervated area. Here we investigate whether human neural stem/progenitor cells (hNSPCs) transplanted to the DRG cavity can serve as a source for repairing lost peripheral sensory connections. We found that hNSPCs robustly differentiate to neurons, which survive long-term transplantation. The neuronal population in the transplants was tightly surrounded by astrocytes, suggesting their active role in neuron survival. Furthermore, 3 months after grafting hNSPCs were found in the dorsal root transitional zone (DRTZ) and within the spinal cord. The level of differentiation of transplanted cells was high in the core of the transplants whereas cells that migrated to the DRTZ and spinal cord were undifferentiated, nestin-expressing precursors. These data indicate that peripherally transplanted hNPSCs can be used for repair of dorsal root avulsion or spinal cord injuries; however, additional factors are required to guide their differentiation to the desired type of neurons. Furthermore, hNPSCs that migrate from the DRG cavity graft site to the DRTZ and spinal cord may provide trophic support for regenerating dorsal root axons, thereby allowing them to reenter the host spinal cord.
    No preview · Article · Feb 2008 · Cell Transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulated migration of stem cells is a feature of the development of all tissues and also of a number of pathologies. In the former situation the migration of stem cells over large distances is required for the correct formation of the embryo. In addition, stem cells are deposited in niche like regions in adult tissues where they can be called upon for tissue regeneration and repair. The migration of cancer stem cells is a feature of the metastatic nature of this disease. In this article we discuss observations that have demonstrated the important role of chemokine signaling in the regulation of stem cell migration in both normal and pathological situations. It has been demonstrated that the chemokine receptor CXCR4 is expressed in numerous types of embryonic and adult stem cells and the chemokine SDF-1/CXCL12 has chemoattractant effects on these cells. Animals in which SDF-1/CXCR4 signaling has been interrupted exhibit numerous phenotypes that can be explained as resulting from inhibition of SDF-1 mediated chemoattraction of stem cells. Hence, CXCR4 signaling is a key element in understanding the functions of stem cells in normal development and in diverse pathological situations.
    Full-text · Article · Aug 2008 · Journal of Neuroimmunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progress in regenerative medicine seems likely to produce new treatments for neurologic conditions that use human cells as therapeutic agents; at least one trial for such an intervention is already under way. The development of cell-based interventions for neurologic conditions (CBI-NCs) will likely include preclinical studies using animals as models for humans with conditions of interest. This paper explores predictive validity challenges and the proper role for animal models in developing CBI-NCs. In spite of limitations, animal models are and will remain an essential tool for gathering data in advance of first-in-human clinical trials. The goal of this paper is to provide a realistic lens for viewing the role of animal models in the context of CBI-NCs and to provide recommendations for moving forward through this challenging terrain.Keywords: clinical trials, modeling, neurologic conditions, stem and progenitor cells
    Full-text · Article · Aug 2008 · Journal of Cerebral Blood Flow & Metabolism
Show more