Trans-fatty acids induce pro-inflammatory responses and endothelial cell dysfunction

Cellular Biochemistry Laboratory, Methodist Research Institute, Clarian Health, 1701 N. Senate - Room E504, Indianapolis, IN 46202, USA.
British Journal Of Nutrition (Impact Factor: 3.45). 05/2008; 99(4):723-31. DOI: 10.1017/S0007114507842772
Source: PubMed


Epidemiological data indicate that there is a strong association between intake of trans-18 : 2 fatty acids (TFA) and sudden cardiac death. There is little known about the mechanisms by which TFA exert harmful effects on the cardiovascular system. The present in vitro study is the first to demonstrate the effects of membrane-incorporated C18 : 2 TFA on human aortic endothelial cell (HAEC) function. Trans-18 : 2 fatty acids were incorporated to a greater extent (2-fold) in the phospholipid fraction of endothelial cells than that of cis-18 : 2; furthermore, these fatty acids were enriched to a similar extent in the TAG fraction. Flow cytometric analysis indicated that TFA treatment of HAEC significantly increased the expression of endothelial adhesion molecules, including intercellular adhesion molecule-1 (CD54) and vitronectin receptor (CD51/CD61). Incorporation of TFA into membranes increased HAEC adhesion to fibronectin- or vitronectin-coated plates by 1.5- to 2-fold, respectively. Neutrophil and monocyte adhesion to HAEC monolayers was nearly proportional to adhesion molecule expression. TFA treatment also induced the release of monocyte chemoattractant protein-1 by nearly 3-fold in non-stimulated HAEC. Furthermore, we examined the role of TFA on in vitro angiogenic assays. Chemotactic migration of TFA-treated HAEC toward sphingosine-1-phosphate (SPP) was significantly increased compared with controls. Conversely, capillary morphogenesis of TFA-treated HAEC was significantly inhibited in response to SPP, suggesting that TFA incorporation suppresses endothelial cell differentiation. In conclusion, these in vitro studies demonstrated that TFA play a role in the induction of pro-inflammatory responses and endothelial cell dysfunction.

Download full-text


Available from: Rafat Siddiqui
  • Source
    • "Decrease of HDL-c Katan and others (1995) Inflammation Lichtenstein and others (1999) Mozaffarian (2006) Harvey and others (2008) Iwata and others (2011) Risk CVDs < hydrogenation Mozaffarian (2006) Mozaffarian (2009) Reformulation "
    [Show abstract] [Hide abstract]
    ABSTRACT: Trans fatty acids (TFAs) mainly arise from 2 major sources: natural ruminal hydrogenation and industrial partial catalytic hydrogenation. Increasing evidence suggests that most TFAs and their isomers cause harmful health effects (that is, increased risk of cardiovascular diseases). Nevertheless, in spite of the existence of an international policy consensus regarding the need for public health action, several countries (for example, France) do not adopt sufficient voluntary approaches (for example, governmental regulations and systematic consumer rejections) nor sufficient industrial strategies (for example, development of healthier manufacturing practices and innovative processes such as fat interesterifications) to eliminate deleterious TFAs from processed foods while ensuring the overall quality of the final product (for example, nutritional value and stability). In this manuscript, we first review the physical-chemical properties of TFAs, their occurrence in processed foods, their main effects on health, and the routine analytical methods to characterize TFAs, before emphasizing on the major industrial methods (that is, fat food reformulation, fat interesterification, genetically modified FAs composition) that can be used worldwide to reduce TFAs in foods.
    Preview · Article · Mar 2013 · Journal of Food Science
  • Source
    • "Oxidative stress induced by free radicals has been associated with the development of several diseases including CVDs, most likely through a vascular proinflammatory response [84]. However, further research is necessary to fully elucidate the implications of the effects of TFA on some markers of oxidative stress. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ingestion of excessive amounts of saturated fatty acids (SFAs) and transfatty acids (TFAs) is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.
    Full-text · Article · Jan 2013 · Mediators of Inflammation
  • Source
    • "In endothelial cells, TFA have been shown to increase markers of endothelial dysfunction including E-selectin, ICAM, and impair flow-mediated vasodilation (measure of vascular NO production) in humans [5], [8]. In this study we chose three different TFA, all isomers of C18 – trans-C18:1 (9 trans), trans-C18:2 (9 trans, 12 trans), trans-C18:1 (11 trans). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.
    Preview · Article · Dec 2011 · PLoS ONE
Show more