TP508 accelerates fracture repair by promoting cell growth over cell death

College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.3). 01/2008; 364(1):187-93. DOI: 10.1016/j.bbrc.2007.07.202
Source: PubMed


TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontechtrade mark Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-kappaB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK.

1 Follower
8 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
    Full-text · Article · Feb 2008 · Expert Review of Endocrinology & Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Investigations into molecular mechanisms in vertebrates have examined which growth factors regulate many of the essential underlying cellular processes in development. Growth factors regulate cell proliferation and differentiation through diverse signaling pathways like the MEK (mitogen-activated protein kinase) and ERK (extracellular signal-regulated kinase) pathway. The MEK and ERK pathway can interact with the PI3K (phosphatidylinositol-3-kinase) and PTEN (phosphatase and tensin homologues deleted on chromosome 10) signaling pathway. Interactions between these pathways during development have been extensively studied in many organs; however, the importance of these pathways in oral development is not well known. In this study, we examined the expression of the phosphorylated forms of ERK (pERK), MEK (pMEK), PTEN (pPTEN) and PI3K during mouse development from E13.5 to E16.5. We found unique and overlapping expression of these factors in the craniofacial region, with pERK and pPTEN showing opposing activation patterns in both the tooth and the tongue.
    No preview · Article · May 2008 · Gene Expression Patterns
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proinflammatory cytokines are infamous for their catabolic effects on tissues and joints in both inflammatory diseases and following the implantation of biomedical devices. However, recent studies indicate that many of these same molecules are critical for triggering tissue regeneration following injury. This review will discuss the role of inflammatory signals in regulating bone regeneration and the impact of both immunomodulatory and antiinflammatory pharmacologic agents on fracture healing, to demonstrate the importance of incorporating rational control of inflammation into the design of tissue engineering strategies.
    No preview · Article · May 2008 · Tissue Engineering Part B Reviews
Show more