PAC1 receptor localization in a model nervous system: Light and electron microscopic immunocytochemistry on the earthworm ventral nerve cord ganglia

Department of General Zoology (Adaptation Biology Research Group of the Hungarian Academy of Sciences), Pécs University, Hungary.
Regulatory Peptides (Impact Factor: 1.83). 02/2008; 145(1-3):96-104. DOI: 10.1016/j.regpep.2007.09.014
Source: PubMed


The presence and pattern of pituitary adenylate cyclase activating polypeptide (PACAP) type I (PAC1) receptors were identified by means of pre- and post-embedding immunocytochemical methods in the ventral nerve cord ganglia (VNC) of the earthworm Eisenia fetida. Light and electron microscopic observations revealed the exact anatomical positions of labeled structures suggesting that PACAP mediates the activity of some interneurons, a few small motoneurons and certain sensory fibers that are located in ventrolateral, ventromedial and intermediomedial sensory longitudinal axon bundles of the VNC ganglia. No labeling was located on large interneuronal systems such as dorsal medial and lateral giant axon systems and ventral giant axons. At the ultrastructural level labeling was mainly restricted to endo- and plasma membranes showing characteristic unequal distribution in various neuron parts. An increasing abundance of PAC1 receptors located on both rough endoplasmic reticulum and plasma membranes was seen from perikarya to neural processes, indicating that intracellular membrane traffic might play a crucial role in the transportation of PAC1 receptors. High number of PAC1 receptors was found in both pre- and postsynaptic membranes in addition to extrasynaptic sites suggesting that PACAP acts as neurotransmitter and neuromodulator in the earthworm nervous system.

5 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to show the presence, distribution and function of the pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors in the CNS and peripheral nervous system of the mollusk, Helix pomatia. PACAP-like and pituitary adenylate cyclase activating polypeptide receptor (PAC1-R)-like immunoreactivity was abundant both in the CNS and the peripheral nervous system of the snail. In addition several non-neuronal cells also revealed PACAP-like immunoreactivity. In inactive animals labeled cell bodies were mainly found and in the neuropile of active animals dense immunostained fiber system was additionally detected suggesting that expression of PACAP-like peptide was affected by the behavioral state of the animal. RIA measurements revealed the existence of both forms of PACAP in the CNS where the 27 amino acid form was found to be dominant. The concentration of PACAP27 was significantly higher in samples from active animals supporting the data obtained by immunohistochemistry. In Western blot experiments PACAP27 and PACAP38 antibodies specifically labeled protein band at 4.5 kDa both in rat and snail brain homogenates, and additionally an approximately 14 kDa band in snail. The 4.5 kDa protein corresponds to PACAP38 and the 14 kDa protein corresponds to the preproPACAP or to a PACAP-like peptide having larger molecular weight than mammalian PACAP38. In matrix-assisted laser desorption ionization time of flight (MALDI TOF) measurements fragments of PACAP38 were identified in brain samples suggesting the presence of a large molecular weight peptide in the snail. Applying antibodies developed against the PACAP receptor PAC1-R, immunopositive stained neurons and a dense network of fibers were identified in each of the ganglia. In electrophysiological experiments, extracellular application of PACAP27 and PACAP38 transiently depolarized or increased postsynaptic activity of neurons expressing PAC1-R. In several neurons PACAP elicited a long lasting hyperpolarization which was eliminated after 1.5 h continuous washing. Taken together, these results indicate that PACAP may have significant role in a wide range of basic physiological functions in snail.
    Full-text · Article · Jun 2008 · Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenylate cyclase activating polypeptide (PACAP) shows a remarkable sequence similarity among species and several studies provide evidence that the functions of PACAP have also been conserved among vertebrate species. Relatively little is known about its presence and functions in invertebrates. The aim of the present study was to investigate whether the well-known anti-apoptotic effect of PACAP can also be demonstrated in invertebrates. This effect was studied in the salivary gland of a molluscan species, Helix pomatia. In this work, we first showed the presence of PACAP-like immunoreactivity in the Helix salivary gland by means of immunohistochemistry. Radioimmunoassay measurements showed that PACAP38-like immunoreactivity dominated in the salivary gland of both active and inactive snails and its concentration was higher in active than in inactive animals in contrast to PACAP27-like immunoreactivity, which did not show activity-dependent changes. PACAP induced a significant elevation of cAMP level in salivary gland extracts. Application of apoptosis-inducing agents, dopamine and colchicine, led to a marked increase in the number of terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the salivary gland, which was significantly attenuated by PACAP treatment. In a similar manner, the number of caspase-positive cells was reduced after co-application of dopamine and PACAP. Taken together, the data indicate that PACAP activates cAMP in a molluscan species and we show, for the first time, that PACAP is anti-apoptotic in the invertebrate Helix pomatia.
    No preview · Article · Jun 2008 · Journal of Molecular Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regeneration of the ventral nerve cord ganglion and peripheral tissues was investigated by radioimmunoassay and immunohistochemistry in the model animal, Eisenia fetida (Annelida, Oligochaeta). It is now well-established that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor, playing important roles in the development of the nervous system in vertebrate animals. Based on the apparent evolutionary conservation of PACAP and on the several common mechanisms of vertebrate and invertebrate nervous regeneration, the question was raised whether PACAP has any role in the regeneration of the earthworm nervous system. As a first step, we studied the distribution, concentration, and time-course of PACAP-like immunoreactivity during caudal regeneration of both lost segments and the ventral nerve cord ganglia in E. fetida. A strong upregulation of PACAP-like immunoreactivity was observed in most tissues following injury as determined by radioimmunoassay and immunohistochemistry. Significant increases in the concentration of PACAP-like compounds were found in the body wall, alimentary canal, and in coelomocytes. The most characteristic morphological feature was the accumulation of immunolabeled neoblasts in the injured tissues, especially in the ventral nerve cord ganglion that initiates and mediates regeneration processes. Our present results show that PACAP/PACAP-like peptides accumulate in the regenerating tissues of the earthworm, suggesting trophic functions of these compounds in earthworm tissues similarly to vertebrate species.
    No preview · Article · Aug 2008 · Journal of Molecular Neuroscience
Show more