KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell-cell junctions. J Cell Biol

Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
The Journal of Cell Biology (Impact Factor: 9.83). 11/2007; 179(2):247-54. DOI: 10.1083/jcb.200705175
Source: PubMed


Cerebral cavernous malformation (CCM), a disease associated with defective endothelial junctions, result from autosomal dominant CCM1 mutations that cause loss of KRIT-1 protein function, though how the loss of KRIT-1 leads to CCM is obscure. KRIT-1 binds to Rap1, a guanosine triphosphatase that maintains the integrity of endothelial junctions. Here, we report that KRIT-1 protein is expressed in cultured arterial and venous endothelial cells and is present in cell-cell junctions. KRIT-1 colocalized and was physically associated with junctional proteins via its band 4.1/ezrin/radixin/moesin (FERM) domain. Rap1 activity regulated the junctional localization of KRIT-1 and its physical association with junction proteins. However, the association of the isolated KRIT-1 FERM domain was independent of Rap1. Small interfering RNA-mediated depletion of KRIT-1 blocked the ability of Rap1 to stabilize endothelial junctions associated with increased actin stress fibers. Thus, Rap1 increases KRIT-1 targeting to endothelial cell-cell junctions where it suppresses stress fibers and stabilizes junctional integrity.

Download full-text


Available from: Rebecca Stockton
  • Source
    • "Src activity has been reported to inhibit the Rho/Rock pathway[47], a pathway also inhibited by Pak2/Pak4[48], Rasip1/Arhgap29[11], and the cerebral cavernous malformation (CCM) proteins, CCM1 and CCM2[15,17]. Interestingly, Rap1 is known to affect the function of Rasip1/Arhgap29[49], and CCM1 is an effector for Rap1[50]. In addition, Src activation blocks the activity of Rasa1[51], while stimulating Pak2/Pak4 activation and Raf activation[9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.
    Full-text · Article · Jan 2016 · PLoS ONE
  • Source
    • "Proteins of the CCM complex assemble around the transmembrane protein heart of glass (HEG) (Kleaveland et al., 2009). The entire CCM protein complex is involved in endothelial junctional stabilization and directly interacts with the vascular endothelial-Cadherin complex (Glading et al., 2007). In addition, the CCM complex represses the activity of b1 integrin by stabilizing KRIT1- binding integrin-cytoplasmic-domain-associated protein 1 (ICAP1) (Faurobert et al., 2013; Macek Jilkova et al., 2014), a specific inhibitor of b1 integrin (Millon-Fré millon et al., 2008) that associates with KRIT1 (Zhang et al., 2001; Zawistowski et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor β1 integrin and occurs in the absence of blood flow. Downregulation of β1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a β1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.
    Full-text · Article · Jan 2015 · Developmental Cell
  • Source
    • "Interestingly, cell–cell and cell–ECM adhesions are also coordinated by an intracellular node, the CCM complex comprising CCM1 and CCM2 (Faurobert and Albiges-Rizo, 2010; Draheim et al., 2014). It regulates VE-cadherin-dependent cell–cell interactions (Glading et al., 2007; Dejana and Orsenigo, 2013), b1 integrin-dependent cell–ECM adhesion (Faurobert et al., 2013) and acto-myosin remodeling (Whitehead et al., 2009; Stockton et al., 2010). The loss-of-function of CCM proteins in humans leads to Cerebral Cavernous Malformations corresponding to stacks of dilated blood vessels lacking mural cells and from where blood extravasates, damaging the adjacent neural tissue (Fischer et al., 2013; Draheim et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that beta 1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of beta 1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to beta 1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated "shear-stress-like" phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of beta 1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.
    Full-text · Article · Dec 2014 · Biology Open
Show more