Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats

Bone Tissue Engineering Lab., Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld 4059, Australia.
Bone (Impact Factor: 3.97). 04/2008; 42(1):81-9. DOI: 10.1016/j.bone.2007.08.048
Source: PubMed


In both physiological and pathological processes, periosteum plays a determinant role in bone formation and fracture healing. However, no specific report is available so far focusing on the detailed structural and major cellular differences between the periostea covering different bone surface in relation to ageing. The aim of this study is to compare the structural and cellular differences in diaphyseal and metaphyseal periostea in different aged rats using histological and immunohistochemical methods.

Download full-text


Available from: Yin Xiao
  • Source
    • "The structure of periosteum varies with age. In infants and children it is thicker, more vascular, active, and loosely attached as compared to adults where it is thinner, less active, and firmly adherent [8]. In all age groups, the cells of the periosteum retain the ability to differentiate into fibroblasts, "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ultimate goal of any dental treatment is the regeneration of lost tissues and alveolar bone. Under the appropriate culture conditions, periosteal cells secrete extracellular matrix and form a membranous structure. The periosteum can be easily harvested from the patient's own oral cavity, where the resulting donor site wound is invisible. Owing to the above reasons, the periosteum offers a rich cell source for bone tissue engineering; hence, the regenerative potential of periosteum is immense. Although the use of periosteum as a regenerative tool has been extensive in general medical field, the regenerative potential of periosteum is highly underestimated in dentistry; therefore, the present paper reviews the current literature related to the regenerative potential of periosteum and gives an insight to the future use of periosteum in dentistry.
    Full-text · Article · Aug 2012 · International Journal of Dentistry
  • Source
    • "A better understanding of periosteal bone formation is important since bone size correlates with bone strength, such that periosteal apposition greatly increases bone strength and is an important determinant of fracture resistance [30] [31]. Structurally, the periosteum is a connective tissue that is tightly attached to the bone surface. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although androgen is considered an anabolic hormone, the consequences of androgen receptor (AR) overexpression in skeletally-targeted AR-transgenic lines highlight the detrimental effect of enhanced androgen sensitivity on cortical bone quality. A compartment-specific anabolic response is observed only in male and not in female AR3.6-transgenic (tg) mice, with increased periosteal bone formation and calvarial thickening. To identify anabolic signaling cascades that have the potential to increase bone formation, qPCR array analysis was employed to define expression differences between AR3.6-tg and wild-type (WT) periosteal tissue. Notably, categories that were significantly different between the two genotypes included axonal guidance, CNS development and negative regulation of Wnt signaling with a node centered on stem cell pathways. Further, fine mapping of AR3.6-tg calvaria revealed that anabolic thickening in vivo is not uniform across the calvaria, occurring only in frontal and in not parietal bones. Multipotent fraction 1 progenitor populations from both genotypes were cultured separately as frontal bone neural crest stem-like cells (fNCSC) and parietal bone mesenchymal stem-like cells (pMSC). Both osteoblastic and adipogenic differentiation in these progenitor populations was influenced by embryonic lineage and by genotype. Adipogenesis was enhanced in WT fNCSC compared to pMSC, but transgenic cultures showed strong suppression of lipid accumulation only in fNCSC cells. Osteoblastogenesis was significantly increased in transgenic fNCSC cultures compared to WT, with elevated alkaline phosphatase (ALP) activity and induction of mineralization and nodule formation assessed by alizarin red and von Kossa staining. Osteocalcin (OC) and ALP mRNA levels were also increased in fNCSC cultures from AR3.6-tg vs. WT, but in pMSC cultures ALP mRNA levels, mineralization and nodule formation were decreased in AR3.6-tg cells. Expression differences identified by array in long bone periosteal tissue from AR3.6-tg vs. WT were recapitulated in the fNCSC samples while pMSC profiles reflected cortical expression. These observations reveal the opposing effects of androgen signaling on lineage commitment and osteoblast differentiation that is enhanced in cells derived from a neural crest origin but inhibited in cells derived from a mesodermal origin, consistent with in vivo compartment-specific responses to androgen. Combined, these results highlight the complex action of androgen in the body that is dependent on the embryonic lineage and developmental origin of the cell. Further, these data these data suggest that the periosteum surrounding long bone is derived from neural crest.
    Preview · Article · Jun 2011 · Bone
  • Source
    • "In this context, there have been but a few reports investigating possible differences and effects on osteogenesis and chondrogenesis of periosteum from various tissue sources in the same animal. Of these, periosteum from only certain bones of various animals and at different ages was examined [O'Driscoll and Fitzsimmons, 2001; O'Driscoll et al., 2001; Fan et al., 2008]. Results of these and related studies [Kwon et al., 2002; Szulc et al., 2006], therefore, could not be easily correlated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to determine whether periosteum from different bone sources in a donor results in the same formation of bone and cartilage. In this case, periosteum obtained from the cranium and mandible (examples of tissue supporting intramembranous ossification) and the radius and ilium (examples of tissues supporting endochondral ossification) of individual calves was used to produce tissue-engineered constructs that were implanted in nude mice and then retrieved after 10 and 20 weeks. Specimens were compared in terms of their osteogenic and chondrogenic potential by radiography, histology, and gene expression levels. By 10 weeks of implantation and more so by 20 weeks, constructs with cranial periosteum had developed to the greatest extent, followed in order by ilium, radius, and mandible periosteum. All constructs, particularly with cranial tissue although minimally with mandibular periosteum, had mineralized by 10 weeks on radiography and stained for proteoglycans with safranin-O red (cranial tissue most intensely and mandibular tissue least intensely). Gene expression of type I collagen, type II collagen, runx2, and bone sialoprotein (BSP) was detectable on QRT-PCR for all specimens at 10 and 20 weeks. By 20 weeks, the relative gene levels were: type I collagen, ilium > radial ≥ cranial ≥ mandibular; type II collagen, radial > ilium > cranial ≥ mandibular; runx2, cranial > radial > mandibular ≥ ilium; and BSP, ilium ≥ radial > cranial > mandibular. These data demonstrate that the osteogenic and chondrogenic capacity of the various constructs is not identical and depends on the periosteal source regardless of intramembranous or endochondral ossification. Based on these results, cranial and mandibular periosteal tissues appear to enhance bone formation most and least prominently, respectively. The appropriate periosteal choice for bone and cartilage tissue engineering and regeneration should be a function of its immediate application as well as other factors besides growth rate.
    Preview · Article · May 2011 · Cells Tissues Organs
Show more