Radiation-induced defects in sucrose single crystals, revisited: A combined electron magnetic resonance and density functional theory study

Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Gent, Belgium.
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy (Impact Factor: 2.35). 06/2008; 69(5):1372-83. DOI: 10.1016/j.saa.2007.09.033
Source: PubMed


The results are presented of an electron magnetic resonance analysis at 110 K of radiation-induced defects in sucrose single crystals X-irradiated at room temperature, yielding a total of nine (1)H hyperfine coupling tensors assigned to three different radical species. Comparisons are made with results previously reported in the literature. By means of electron paramagnetic resonance and electron nuclear double resonance temperature variation scans, most of the discrepancies between the present 110 K study and a previous 295 K study by Sagstuen and co-workers are shown to originate from the temperature dependence of proton relaxation times and hyperfine coupling constants. Finally, radical models previously suggested in the literature are convincingly refuted by means of quantum chemical density functional theory calculations.

8 Reads
  • Source
    • "n/a[51,106]U2 C-centered, location ? n/a[51,106]295 K, stable T1 Certain[55,9]T2/T3 Certain[55,8]T4 C-centered, location ? n/a[56] "
    [Show abstract] [Hide abstract]
    ABSTRACT: We review our research of the past decade towards identification of radiation-induced radicals in solid state sugars and sugar phosphates. Detailed models of the radical structures are obtained by combining EPR and ENDOR experiments with DFT calculations of g and proton HF tensors, with agreement in their anisotropy serving as most important criterion. Symmetry-related and Schonland ambiguities, which may hamper such identification, are reviewed. Thermally induced transformations of initial radiation damage into more stable radicals can also be monitored in the EPR (and ENDOR) experiments and in principle provide information on stable radical formation mechanisms. Thermal annealing experiments reveal, however, that radical recombination and/or diamagnetic radiation damage is also quite important. Analysis strategies are illustrated with research on sucrose. Results on dipotassium glucose-1-phosphate and trehalose dihydrate, fructose and sorbose are also briefly discussed. Our study demonstrates that radiation damage is strongly regio-selective and that certain general principles govern the stable radical formation.
    Preview · Article · Jun 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary free radical formations in fructose single crystals X-irradiated at 10 K were investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three principal crystallographic planes and a fourth skewed plane allowed the unambiguous determination of five proton hyperfine coupling tensors. From the EIE studies, these hyperfine interactions were assigned to three different radicals, labeled T1, T1* and T2. For the T1 and T1* radicals, the close similarity in hyperfine coupling tensors suggests that they are due to the same type of radical stabilized in two slightly different geometrical conformations. Periodic density functional theory calculations were used to aid the identification of the structure of the radiation-induced radicals. For the T1/T1* radicals a C3 centered hydroxyalkyl radical model formed by a net H abstraction is proposed. The T2 radical is proposed to be a C5 centered hydroxyalkyl radical, formed by a net hydrogen abstraction. For both radicals, a very good agreement between calculated and experimental hyperfine coupling tensors was obtained.
    Full-text · Article · Jun 2008 · The Journal of Physical Chemistry A
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the major stable radiation-induced radicals in sucrose single crystals (radical T2) has been identified by means of density functional theory (DFT) calculations of electron magnetic resonance parameters. The radical is formed by a net glycosidic bond cleavage, giving rise to a glucose-centered radical with the major part of the spin density residing at the C 1 carbon atom. A concerted formation of a carbonyl group at the C 2 carbon accounts for the relatively small spin density at C 1 and the enhanced g factor anisotropy of the radical, both well-known properties of this radical from several previous experimental investigations. The experimentally determined and DFT calculated proton hyperfine coupling tensors agree very well on all accounts. The influence of the exact geometrical configuration of the radical and its environment on the tensors is explored in an attempt to explain the occurrence and characteristics of radical T3, another major species that is most likely another conformation of T2. No definitive conclusions with regard to the actual structure of T3 could be arrived at from this study. However, the results indicate that, most likely, T3 is identical in chemical structure to T2 and that changes in the orientation of neighboring hydroxy groups or changes in the configuration of the neighboring fructose ring can probably not account for the type and size of the discrepancies between T2 and T3.
    No preview · Article · Jul 2008 · The Journal of Physical Chemistry B
Show more