Mitochondrial gene expression and increased oxidative metabolism: Role in increased lifespan of fat-specific insulin receptor knock-out mice

Joslin Diabetes Center, One Joslin Place and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
Aging cell (Impact Factor: 6.34). 01/2008; 6(6):827-39. DOI: 10.1111/j.1474-9726.2007.00346.x
Source: PubMed


Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, beta-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) and PGC-1beta, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse.

Download full-text


Available from: Steven J Russell, Nov 21, 2014
  • Source
    • "Interestingly, dwarf mice have increased mitochondrial respiration and increased metabolism per body weight, indicating that decreased GH signaling may beneficially affect mitochondrial flexibility by increasing the capacity for fat oxidation [73] [74]. Similarly, fat-specific insulin receptor knockout mice, which also have extended lifespan, have increased expression of PGC-1α and PGC-1β, enhanced mitochondrial gene expression, and boosted oxidative metabolism in white adipose tissue [75] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary restriction (DR) attenuates many detrimental effects of aging and consequently promotes health and increases longevity across organisms. While over the last 15 years extensive research has been devoted towards understanding the biology of aging, the precise mechanistic aspects of DR are yet to be settled. Abundant experimental evidence indicates that the DR effect on stimulating health impinges several metabolic and stress-resistance pathways. Downstream effects of these pathways include a reduction in cellular damage induced by oxidative stress, enhanced efficiency of mitochondrial functions and maintenance of mitochondrial dynamics and quality control, thereby attenuating age-related declines in mitochondrial function. However, the literature also accumulates conflicting evidence regarding how DR ameliorates mitochondrial performance and whether that is enough to slow age-dependent cellular and organismal deterioration. Here, we will summarize the current knowledge about how and to which extent the influence of different DR regimes on mitochondrial biogenesis and function contribute to postpone the detrimental effects of aging on healthspan and lifespan. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · May 2015 · Biochimica et Biophysica Acta
  • Source
    • "One of the promising targets is adipose insulin signaling pathway. Consistent with this, fat-specific disruption of this signaling pathway led to extended lifespan and improved metabolism (Bluher et al., 2003; Katic et al., 2007). Another possible target for aging is the mTORC1 signaling pathway in adipose tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.
    Full-text · Article · Oct 2013 · Protein & Cell
  • Source
    • "For instance, energy homeostasis, lipid metabolism, IGF-1, PTEN and mitochondrial function in liver were slightly up-regulated during the first half of the lifespan but declined during the last 25% of the lifespan (Figure 1) [4]. These processes have previously been correlated to chronological aging by others [12, 53-67], but interpreting the dynamics of biological functions throughout the lifespan in multiple tissues has been proved difficult so far. Our data can contribute to unravelling the dynamics of functional pathways throughout time in several tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the next decades the elderly population will increase dramatically, demanding appropriate solutions in health care and aging research focusing on healthy aging to prevent high burdens and costs in health care. For this, research targeting tissue-specific and individual aging is paramount to make the necessary progression in aging research. In a recently published study we have attempted to make a step interpreting aging data on chronological as well as pathological scale. For this, we sampled five major tissues at regular time intervals during the entire C57BL/6J murine lifespan from a controlled in vivo aging study, measured the whole transcriptome and incorporated temporal as well as physical health aspects into the analyses. In total, we used 18 different age-related pathological parameters and transcriptomic profiles of liver, kidney, spleen, lung and brain and created a database that can now be used for a broad systems biology approach. In our study, we focused on the dynamics of biological processes during chronological aging and the comparison between chronological and pathology-related aging.
    Full-text · Article · Oct 2013 · Aging
Show more