Article

Risk of Waterborne Illness Via Drinking Water in the United States

University of Texas at El Paso, El Paso, Texas, United States
Reviews of environmental contamination and toxicology (Impact Factor: 3.74). 02/2008; 192:117-58. DOI: 10.1007/978-0-387-71724-1_4
Source: PubMed

ABSTRACT

The quality of drinking water in the United States is among the best in the world; however, waterborne disease outbreaks continue to occur, and many more cases of endemic illness are estimated. Documented waterborne disease outbreaks are primarily the result of technological failures or failure to treat the water (Craun et al. 2006). Current federal regulations require that all surface waters used for a drinking water supply be treated to reduce the level of pathogens so as to reduce the risk of infection to 1:10,000 per year (Regli et al. 1991). To achieve this goal, water treatment must, at a minimum, reduce infectious viruses by 99.99% and protozoan parasites by 99.9% (Regli et al. 2003). If Cryptosporidium concentrations exceed a certain level in the source water, additional reductions are required. This degree of treatment is usually achieved by a combination of physical processes (coagulation, sedimentation, and filtration) and disinfection (chlorination, ozonation). Filtration is essential for the removal of protozoan parasites due to their resistance to chlorination and ozonation at doses normally used in drinking water treatment (Barbeau et al. 2000; Korich et al. 1990; Rennecker et al. 1999). A variance from filtration is allowed in some cases if the watershed is protected and carefully monitored for protozoan pathogens.

Download full-text

Full-text

Available from: Charles Gerba, May 27, 2015
  • Source
    • "Despite limitations of the current analysis, our findings suggest that rural, small and medium-sized community water supplies in underserved settings can contribute to endemic GII risk. Other studies of waterborne disease risk where comparable challenges apply would be helpful, given current unknowns around the distribution and magnitude of the burden, especially in small water supplies [1,5,6,34353637 Supporting Information S1 File. Cross-sectional Study Questionnaire. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Community water supplies in underserved areas of the United States may be associated with increased microbiological contamination and risk of gastrointestinal disease. Microbial and health risks affecting such systems have not been systematically characterized outside outbreak investigations. The objective of the study was to evaluate associations between self-reported gastrointestinal illnesses (GII) and household-level water supply characteristics. Methods: We conducted a cross-sectional study of water quality, water supply characteristics, and GII in 906 households served by 14 small and medium-sized community water supplies in Alabama's underserved Black Belt region. Results: We identified associations between respondent-reported water supply interruption and any symptoms of GII (adjusted odds ratio (aOR): 3.01, 95% confidence interval (CI) = 1.65-5.49), as well as low water pressure and any symptoms of GII (aOR: 4.51, 95% CI = 2.55-7.97). We also identified associations between measured water quality such as lack of total chlorine and any symptoms of GII (aOR: 5.73, 95% CI = 1.09-30.1), and detection of E. coli in water samples and increased reports of vomiting (aOR: 5.01, 95% CI = 1.62-15.52) or diarrhea (aOR: 7.75, 95% CI = 2.06-29.15). Conclusions: Increased self-reported GII was associated with key water system characteristics as measured at the point of sampling in a cross-sectional study of small and medium water systems in rural Alabama in 2012 suggesting that these water supplies can contribute to endemic gastro-intestinal disease risks. Future studies should focus on further characterizing and managing microbial risks in systems facing similar challenges.
    Full-text · Article · Jan 2016 · PLoS ONE
  • Source
    • "Water is an important transmission vehicle for a significant number of microorganisms (Reynolds et al., 2008). Typically, these pathogens are enteric, shed in feces and transmitted through drinking water causing gastroenteritis (Snel et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of Cryptosporidium and/or Giardia in drinking water represents a major public health problem. This study was the first report concerned with the occurrence of these protozoa in drinking water in Saudi Arabia. The study was undertaken in Al-Taif, a high altitude region, Western Saudi Arabia. Eight underground wells water, six desalinated water and five domestic brands of bottled water samples, 10 liter each, were monthly collected between May 2013 and April 2014. All samples (n = 228), were processed using an automated wash/elution station (IDEXX Laboratories, Inc.). Genomic DNA was directly isolated and purified from samples concentrates with QIAamp® Stool Mini Kit (Qiagen). The target protozoan DNA sequences were amplified using two previously published nested-PCR protocols. Of all the analyzed water, 31 samples (≈14%) were found contaminated with the target protozoa. Giardia lamblia was detected in ≈10% (7/72) of desalinated water and in ≈9% (9/96) of wells water. On the other hand, Cryptosporidium was identified in ≈8% (8/72) of desalinated water and in ≈7% (7/96) of wells water. All bottled water samples (n = 60) were (oo)cysts-free. Protozoan (oo)cysts were more frequently identified in water samples collected in the spring than in other seasons. The methodology established in our study proved sensitive, cost-effective and is amenable for future automation or semi-automation. For better understanding of the current situation that represent an important health threat to the local inhabitants, further studies concerned with (oo)cyst viability, infectivity, concentration and genotype identification are recommended. © 2015, Malaysian Society for Parasitology. All rights reserved.
    Full-text · Article · Jul 2015 · Tropical biomedicine
  • Source
    • "Water is an important transmission vehicle for a significant number of microorganisms (Reynolds et al., 2008). Typically, these pathogens are enteric, shed in feces and transmitted through drinking water causing gastroenteritis (Snel et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of Cryptosporidium and/or Giardia in drinking water represents a major public health problem. This study was the first report concerned with the occurrence of these protozoa in drinking water in Saudi Arabia. The study was undertaken in Al-Taif, a high altitude region, Western Saudi Arabia. Eight underground wells water, six desalinated water and five domestic brands of bottled water samples, 10 liter each, were monthly collected between May 2013 and April 2014. All samples (n = 228), were processed using an automated wash/elution station (IDEXX Laboratories, Inc.). Genomic DNA was directly isolated and purified from samples concentrates with QIAamp® Stool Mini Kit (Qiagen). The target protozoan DNA sequences were amplified using two previously published nested-PCR protocols. Of all the analyzed water, 31 samples (≈14%) were found contaminated with the target protozoa. Giardia lamblia was detected in ≈10% (7/72) of desalinated water and in ≈9% (9/96) of wells water. On the other hand, Cryptosporidium was identified in ≈8% (8/72) of desalinated water and in ≈7% (7/96) of wells water. All bottled water samples (n = 60) were (oo)cysts-free. Protozoan (oo)cysts were more frequently identified in water samples collected in the spring than in other seasons. The methodology established in our study proved sensitive, cost-effective and is amenable for future automation or semi-automation. For better understanding of the current situation that represent an important health threat to the local inhabitants, further studies concerned with (oo)cyst viability, infectivity, concentration and genotype identification are recommended.
    Full-text · Article · Jun 2015 · Tropical biomedicine
Show more