Guidelines on good clinical laboratory practice: Bridging operations between research and clinical research laboratories

PPD Inc., 929 North Front Street, Wilmington, NC 28401-3331, United States.
Journal of Pharmaceutical and Biomedical Analysis (Impact Factor: 2.98). 02/2008; 46(1):18-29. DOI: 10.1016/j.jpba.2007.10.010
Source: PubMed


A set of Good Clinical Laboratory Practice (GCLP) standards that embraces both the research and clinical aspects of GLP were developed utilizing a variety of collected regulatory and guidance material. We describe eleven core elements that constitute the GCLP standards with the objective of filling a gap for laboratory guidance, based on IND sponsor requirements, for conducting laboratory testing using specimens from human clinical trials. These GCLP standards provide guidance on implementing GLP requirements that are critical for laboratory operations, such as performance of protocol-mandated safety assays, peripheral blood mononuclear cell processing and immunological or endpoint assays from biological interventions on IND-registered clinical trials. The expectation is that compliance with the GCLP standards, monitored annually by external audits, will allow research and development laboratories to maintain data integrity and to provide immunogenicity, safety, and product efficacy data that is repeatable, reliable, auditable and that can be easily reconstructed in a research setting.

Download full-text


Available from: Isaac Rodriguez-Chavez, Mar 11, 2014
    • "As noted in the beginning of this unit, it should be emphasized that all aspects of cell culture and all involved materials and equipment must be aseptic. Good laboratory practice (GLP; Ezzelle et al., 2008) and good cell culture practice (GCCP; Coecke et al., 2005) needs to be applied in order to obtain optimal results, and to minimize the risks associated with handling of human materials. A careful risk evaluation should be done with a senior researcher and the clinician involved . "
    [Show abstract] [Hide abstract]
    ABSTRACT: After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. © 2016 by John Wiley & Sons, Inc.
    No preview · Article · Feb 2016 · Current protocols in stem cell biology
  • Source
    • "Training: To standardize PBMC isolation and cryopreservation, each site-affiliated laboratory operated in compliance with required standards for GCLP (Ezzelle et al., 2008; Sarzotti-Kelsoe et al., 2009; Stiles et al., 2003). Operators used identical CHAVI central standard operating procedures (SOPs) for the processing, labeling, transport and storage of PBMC specimens. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage.
    Full-text · Article · Jun 2014 · Journal of Immunological Methods
  • Source
    • "This haemoglobin range may serve in this area as standard for interpretation of laboratory results. This study has not only allowed the definition of haemoglobin ranges for a rural area in Ethiopia, but also provided evidence that reference intervals from one population should not be applied universally [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of appropriate reference intervals is critical not only to provide optimal clinical care, but also to enrol populations in medical research. The aim of this study was to generate normal ranges of laboratory values for haemoglobin among healthy Ethiopian adults and children and to determine if anaemia is a possible indicator of malaria in women and children in this area of Ethiopia. This study was carried out from January to May 2010. The reference sample population with malaria-negative consisted of 454 individuals, divided women, men and children. The malaria-infected sample population consisted of 117 individuals. The reference ranges were based on the guidelines from the Clinical and Laboratory Standards Institute. Haemoglobin concentration was determined by Hemo-Control EKF Diagnostic Analyser on whole blood. Testing for malaria-positive and negative infection was done by microscopy and by PCR. The lower limits for adult haemoglobin range obtained from this population were slightly higher than those derived from other African populations, but were equal to those established by other studies in Ethiopia and the World Health Organization (WHO). Regarding children, the minimum values were lower than those obtained from different African populations and those established by WHO. The malaria-negative group had anaemia in 35.6% of cases and in the malaria-positive group in 70.9%. There was a stronger, statistically significant association between anaemia and malaria-positive samples than between anaemia and malaria-negative samples in women and both groups of children. The results from this study are a contribution in the definition of the haemoglobin parameters in African populations, which could be taken as standards for interpretation of laboratory results. The haemoglobin indices in adults from Gambo tended to be higher than other African populations and in children were lower than other studies in Africa. The results also suggest that anaemia is not useful as a supportive diagnostic criterion to monitor and evaluate malaria in women and children from Ethiopia, because a 29.1% of malaria cases will be not detected, because of not having anaemia.
    Full-text · Article · Dec 2013 · Malaria Journal
Show more