The Origins of Medulloblastoma Subtypes

Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Annual Review of Pathology Mechanisms of Disease (Impact Factor: 18.75). 02/2008; 3(1):341-65. DOI: 10.1146/annurev.pathmechdis.3.121806.151518
Source: PubMed


Childhood tumors containing cells that are morphologically and functionally similar to normal progenitor cells provide fertile ground for investigating the links between development and cancer. In this respect, integrated studies of normal cerebellar development and the medulloblastoma, a malignant embryonal tumor of the cerebellum, have proven especially fruitful. Emerging evidence indicates that the different precursor cell populations that form the cerebellum and the cell signaling pathways that regulate its development likely represent distinct compartments from which the various subtypes of medulloblastoma arise. Definitive characterization of each medulloblastoma subtype will undoubtedly improve treatment of this disease and provide important insights to the origins of cancer.

1 Follower
14 Reads
  • Source
    • "For example, the SHH-MB subgroup, consisting of approximately 30% of human MBs, is one of the most studied subtypes and has been recapitulated in several genetic mouse models [3] [15] and was recently subdivided into three human subtypes [21]. SHH is an essential pathway that normally regulates the proliferation of one of the major cell populations within the developing Cb, the granule cell precursors (GCPs) [22] [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm(3). Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain.
    Full-text · Article · Dec 2014 · Neoplasia (New York, N.Y.)
  • Source
    • "In the early literature, researchers have described that MB invades the embryonic posterior fossa of the cerebellum and this is believed to arise from the precursor cells of the external granule layer or neuroepithelial cells from the cerebellar ventricular zone of the developing cerebellum. Recent studies described that MBs can divide as different diseases originating from different locations within the cerebellum depending on molecular subgroup [2,3,4,5,6]. If patients do not receive active treatment, these patients are inclined to have recurrence and die within 3 years [7,8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma (MB) is a malignant primary brain tumor with poor prognosis. MB-derived CD133/Nestin double-positive cells (MB-DPs) exhibit cancer stem-like cell (CSC)-like properties that may contribute to chemoradioresistance, tumorigenesis and recurrence. In various tumors, signal transducer and activator of transcription 3 (STAT3) upregulation including MB which can regulate the expression of Nestin. Celecoxib, a selective COX-2 inhibitor, has been shown to potentially reduce STAT3 phosphorylation. The aim of the present study was to investigate the role of celecoxib in enhancing the effects of ionizing radiotherapy (IR) on MB-DP. MB-DPs and MB-derived CD133/Nestin double-negative cells (MB-DNs) were isolated from medulloblastoma cell line Daoy. Then, both of them were treated with celecoxib in different concentrations, and cell viability was assessed. The assays of cell survival, sphere formation, radiosensitivity, colony formation, apoptotic activity and mouse xenografting experiments in MB-DPs and MB-DNs treated with celecoxib alone, radiation alone, or celecoxib combined with radiation were further evaluated. We isolated MB-DPs from MB cell line Daoy, which exhibited typical CSC-like characteristics. Microarray analysis and Western blotting both indicated the upregulation of Janus kinase (JAK)-STAT cascade and STAT3 phosphorylation. Incubation with celecoxib dose-dependently suppressed the CSC-like properties and enhanced the IR effect on the induction of apoptosis, as detected by TUNEL assay and staining for Caspase 3 and Annexin V. Finally, celecoxib also enhanced the IR effect to suppress tumorigenesis and synergistically improve the recipient survival in orthotopic MB-derived CD133/Nestin double-positive cells (MB-DP cells) bearing mice.
    Full-text · Article · Jun 2014 · International Journal of Molecular Sciences
  • Source
    • "MYC-driven MB cases (Group 3) have a high risk of recurrence, the worst outcome of the four subgroups, and a high proportion of large cells/anaplastic (LCA) tumors [27]. In comparative studies on tumor samples, as well as in vitro and in vivo preclinical investigations, the LCA variant has been associated with over-expression of the oncogene MYC and with aggressive and invasive tumor cell behavior [4]. Scoring for the association of the NOTCH ligand JAG2 with MB histological subtypes in distinct datasets with available histological details (n = 364), we detected a significant enrichment of JAG2 expression in LCA tumors compared to classic and desmoplastic cases (Figure  3g and Additional file 4: Figure S4a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma (MB), the most common pediatric malignant brain cancer, typically arises as pathological result of deregulated developmental pathways, including the NOTCH signaling cascade. Unlike the evidence supporting a role for NOTCH receptors in MB development, the pathological functions of NOTCH ligands remain largely unexplored. By examining the expression in large cohorts of MB primary tumors, and in established in vitro MB models, this research study demonstrates that MB cells bear abnormal levels of distinct NOTCH ligands. We explored the potential association between NOTCH ligands and the clinical outcome of MB patients, and investigated the rational of inhibiting NOTCH signaling by targeting specific ligands to ultimately provide therapeutic benefits in MB. The research revealed a significant over-expression of ligand JAG1 in the vast majority of MBs, and proved that JAG1 mediates pro-proliferative signals via activation of NOTCH2 receptor and induction of HES1 expression, thus representing an attractive therapeutic target. Furthermore, we could identify a clinically relevant association between ligand JAG2 and the oncogene MYC, specific for MYC-driven Group 3 MB cases. We describe for the first time a mechanistic link between the oncogene MYC and NOTCH pathway in MB, by identifying JAG2 as MYC target, and by showing that MB cells acquire induced expression of JAG2 through MYC-induced transcriptional activation. Finally, the positive correlation of MYC and JAG2 also with aggressive anaplastic tumors and highly metastatic MB stages suggested that high JAG2 expression may be useful as additional marker to identify aggressive MBs.
    Full-text · Article · Apr 2014
Show more