Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System

Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
Journal of Neuroimmune Pharmacology (Impact Factor: 4.11). 10/2006; 1(3):340-50. DOI: 10.1007/s11481-006-9032-4
Source: PubMed


This review will provide an in-depth discussion on the previous development of nanoparticle-based drug delivery systems (DDS) and discuss original research data that includes the therapeutic enhancement of antiretroviral therapy. The use of nanoparticle DDS will allow practitioners to use drugs to target specific areas of the body. In the treatment of malignancies, the use of nanoparticles as a DDS is making measurable treatment impact. Medical imaging will also utilize DDS to illuminate tumors, the brain, or other cellular functions in the body. The utility of nanoparticle DDS to improve human health is potentially enormous.

Download full-text


Available from: Christopher Destache, Aug 04, 2014
  • Source
    • "Among these formulations, nanoparticles (NPs) are stable, solid colloidal particles consisting of biodegradable polymer or lipid materials and range in size from 10 to 1,000 nm. Drugs can be absorbed onto the particle surface and are entrapped inside the polymer/lipid or dissolved within the particle matrix [22] [23]. Over the past few decades, there have been considerable interests in developing nanosized liposomes as potential and effective drug delivery carriers due to their ability to control drug release and delivery. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study attempted to prepare polyethylene-glycol modified (PEGylated) and folate-PEGylated liposomes containing paclitaxel (Ptx) in order to reduce the toxicity and improve the bioavailability and biocompatibility by targeting drugs to the lymphatics using cancer cell specific ligand folate to prevent metastasis via the lymphatic system. Liposomes were prepared by lipid film hydration method using PEG and folate-PEG as surface modifiers. The mean particle size and encapsulation efficiency of liposomes were 114 ± 6.81 nm and 81 ± 2.3 % for PEGylated liposome and 122 ± 4.87 nm and 88 ± 2.0 % for folate-PEGylated liposome, respectively. According to stability test, it could be confirmed that PEGylated and folate-PEGylated liposomes were stable for at least 5 days. After intravenous administration of the PEGylated and folate-PEGylated liposomes to rats, the C L t (total clearance) and t 1 / 2 (half-life) were significantly different ( P < 0.05 ) compared with those of PADEXOL Inj. In targeting efficiency, calculated as the concentration ratio of Ptx in lymph nodes and plasma, there was significant increase in targeting efficiency at lymph nodes ( P < 0.05 ). From these results, we could conclude that the prepared Ptx-containing PEGylated and folate-PEGylated liposomes are good candidates for the targeted delivery of the drug to lymphatic system.
    Full-text · Article · Jan 2015 · Journal of Nanomaterials
  • Source
    • "When nanoparticles are functionalized or linked to agents such as drugs, ligands, image contrast compounds through covalent linkages like amide or disulphide bonds, or through methods such as encapsulation, surface attachment or entrapment, they can be targeted towards a certain therapeutic application. For drug delivery through nanoparticles, advantages such as increased aqueous solubility, prolonged release, improved bioavailability, and decreased toxic side effects of the drug can be achieved [1]. Of the many nanoparticles emerging, gold nanoparticles have gained tremendous importance, especially in applications such as drug delivery, bioimaging, single molecule tracking, and biosensing due to some of its inherent properties [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel, colloidal nanogold-based drug delivery system for phenytoin, a well-known anti-epileptic drug with an enhanced efflux via P-glycoprotein, has been proposed in this study. The vital physical properties that would aid in predicting the biological interaction of this system were profiled using various techniques such as UV-Vis, DLS, and TEM in corroboration with theoretical calculations. It was significant to note that the binding of phenytoin to colloidal nanogold was strongly pH-dependent with the optimum at pH 5.5 and a consistently reproducible spectral shift. Analysis of the conjugate by FTIR revealed that the imide functional group of phenytoin mediated a dative coordinate bond to colloidal nanogold at the optimum pH. The amount of the drug bound to the gold was quantified to be 85.8±2.5% (w/v) by HPLC. Hypothetically, the surface charge of the conjugate could possibly imply charge-mediated uptake across the cell membrane. Further, the novel conjugate was screened for its cytotoxicity in two cell lines and the dosage range was identified. Subsequent development, thorough evaluations in suitable model systems, and the potential for bioimaging to track the payload would validate our hypothesis on the conjugate for better intracellular retention at the site of action, and thereby achieve the targeted delivery.
    Full-text · Article · Dec 2014 · Scientia Pharmaceutica
  • Source
    • "The SLN's ability to incorporate hydrophilic/hydrophobic drugs imparts unique diversity. Hence controlled drug delivery, enhancement of bioavailability of entrapped drugs via modification of dissolution rate and/or improvement of tissue distribution, and targeting of drugs by using SLNs have been reported in various application routes like parenteral (intravenously, intramuscularly, or subcutaneously), oral, rectal, ophthalmic, and topical (cosmetics and dermatological) preparations [8–11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5 ± 3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6-98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75 ± 5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (C max⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES).
    Full-text · Article · May 2014 · BioMed Research International
Show more