Enhanced green fluorescent proteinYexpressing human mesenchymal stem cells retain neural marker expression

MS Labs, Burden Centre, University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, BS16 1JB, UK.
Journal of Neuroimmunology (Impact Factor: 2.47). 02/2008; 193(1-2):59-67. DOI: 10.1016/j.jneuroim.2007.10.019
Source: PubMed


Mesenchymal stem cells (MSCs) have the potential to play a role in autologous treatment of central nervous system injury or disease. Here we transduced human MSCs with enhanced green fluorescent protein (EGFP). We compared the capacity of control and EGFP-positive cells to proliferate under normal culture conditions, as well as express neural markers following trans-differentiation. EGFP-positive cells proliferated comparably to controls, retained EGFP expression over the course of multiple passages, and retained neural marker expression at levels comparable to control MSCs. Further neurogenic capacity of EGFP-positive human MSCs was examined by growth as neural stem cell-like neurospheres. No significant difference was observed in the ability of control or EGFP-positive cells to generate primary neurospheres or to expand during passage. When examined by immunostaining for the presence of neuroectodermal markers, neurosphere-derived cells similarly expressed neural markers. We show that human MSCs expressing EGFP represent an attractive and practical source of stem cells for the study of repair and regeneration in neurological models.

Download full-text


Available from: James B Uney
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is a currently incurable inflammatory demyelinating syndrome. Recent reports suggest that bone marrow derived mesenchymal stem cells may have therapeutic potential in experimental models of demyelinating disease, but various alternative mechanisms, ranging from systemic immune effects to local cell replacement, have been proposed. Here we used intraperitoneal delivery of human mesenchymal stem cells to help test (a) whether human cells can indeed suppress disease, and (b) whether CNS infiltration is required for any beneficial effect. We found pronounced amelioration of clinical disease but profoundly little CNS infiltration. Our findings therefore help confirm the therapeutic potential of mesenchymal stem cells, show that this does indeed extend to human cells, and are consistent with a peripheral or systemic immune effect of human MSCs in this model.
    Full-text · Article · Nov 2008 · Neuroscience Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow-derived mesenchymal stem cells (MSCs) are of therapeutic interest in a variety of neurological diseases. In this study, we wished to determine whether human MSCs secrete factors which protect cultured rodent cortical neurons from death by trophic factor withdrawal or nitric oxide (NO) exposure. Medium conditioned by MSCs attenuated neuronal death under these conditions, a process which was dependent on intact PI(3)kinase/Akt pathway signaling. Trophic withdrawal and NO exposure in cultured cortical neurons led to reduction in Akt signaling pathways, whereas NO administration activated p38 MAPkinase in neuronal cultures. Addition of MSC-conditioned medium significantly activated the PI3kinase/Akt pathway and in neurons exposed to NO, MSC-conditioned medium reduced p38 signaling. We show that MSCs secrete brain-derived neurotrophic factor (BDNF) and addition of anti-BDNF neutralising antibodies to MSC-conditioned medium attenuated its neuroprotective effect. Exposure of neurons to BDNF increased activation of Akt pathways and protected neurons from trophic factor withdrawal. These observations determine the mechanisms of neuroprotection offered by MSC-derived factors and suggest an important role for BDNF in neuronal protection.
    No preview · Article · Apr 2009 · Stem Cell Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent mesenchymal stem cells (MSCs) represent a promising autologous source for regenerative medicine. Because MSCs can be isolated from adult tissues, they represent an attractive cell source for autologous transplantation. A straightforward therapeutic strategy in the field of stem cell-based regenerative medicine is the transplantation of functional differentiated cells as cell replacement for the lost or defective cells affected by disease. However, this strategy requires the capacity to regulate stem cell differentiation toward the desired cell fate. This therapeutic approach assumes the capability to direct MSC differentiation toward diverse cell fates, including those outside the mesenchymal lineage, a process termed transdifferentiation. The capacity of MSCs to undergo functional transdifferentiation has been questioned over the years. Nonetheless, recent studies support that genetic manipulation can serve to promote transdifferentiation. Specifically, forced expression of certain transcription factors can lead to reprogramming and alter cell fate. Using such a method, fully differentiated lymphocytes have been reprogrammed to become macrophages and, remarkably, somatic cells have been reprogrammed to become embryonic stem-like cells. In this review, we discuss the past and current research aimed at transdifferentiating MSCs, a process with applications that could revolutionize regenerative medicine.
    Full-text · Article · Oct 2009 · Stem Cells
Show more