Echo combination to reduce Proton Resonance Frequency (PRF) thermometry errors from fat

Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA.
Journal of Magnetic Resonance Imaging (Impact Factor: 3.21). 03/2008; 27(3):673-7. DOI: 10.1002/jmri.21238
Source: PubMed


To validate echo combination as a means to reduce errors caused by fat in temperature measurements with the proton resonance frequency (PRF) shift method.
Computer simulations were performed to study the behavior of temperature measurement errors introduced by fat as a function of echo time. Error reduction by combining temperature images acquired at different echo times was investigated. For experimental verification, three echoes were acquired in a refocused gradient echo acquisition. Temperature images were reconstructed with the PRF shift method for the three echoes and then combined in a weighted average. Temperature measurement errors in the combined image and the individual echoes were compared for pure water and different fractions of fat in a computer simulation and for a phantom containing a homogenous mixture with 20% fat in an MR experiment.
In both simulation and MR measurement, the presence of fat caused severe temperature underestimation or overestimation in the individual echoes. The errors were substantially reduced after echo combination. Residual errors were about 0.3 degrees C for 10% fat and 1 degrees C for 20% fat.
Echo combination substantially reduces temperature measurement errors caused by small fractions of fat. This technique then eliminates the need for fat suppression in tissues such as the liver.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have shown that the combination of radiation therapy and hyperthermia, when delivered at moderate temperatures (40°-45°C) for sustained times (30-90 minutes), can help to provide palliative relief and augment tumor response, local control, and survival. However, the dependence of treatment success on achieved temperature highlights the need for accurate thermal dosimetry, so that the prescribed thermal dose can be delivered to the tumor. This can be achieved noninvasively with MR thermometry. However, there are many challenges to performing MR thermometry in the breast, where hyperthermia of locally advanced breast cancer can provide a benefit. These include magnetic field system drift, fatty tissue, and breathing motion. The purpose of this research was to develop a system for the hyperthermia treatment of LABC while performing MR thermometry. A hardware system was developed for performing the hyperthermia treatment within the MR bore. Methods were developed to correct for magnetic field system drift and to correct for breath hold artifacts in MR thermometry of the tumor using measurement of field changes in fat references. Lastly, techniques were developed for measuring temperature in the fatty tissue using multi-echo fat water separation methods, reducing the error of performing MR thermometry in such tissues. All of these methods were characterized with phantom and in vivo experiments in a 1.5T MR system. The results of this research can provide the means for successful hyperthermia treatment of LABC with MR thermometry. With this thermometry, accurate thermal doses can be obtained, potentially providing improved outcomes. However, these results are not only applicable in the breast, but can also be used for improved MR thermometry in other areas of the body, such as the extremities or abdomen. Dissertation
    Preview · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: Summary form only given. The simplest boundary condition to implement in a finite difference time domain (FDTD) code is that of the perfect conductor where the tangential electric field and the normal magnetic field are set to zero. However, many problems require a lossy boundary. This is often implemented with the creation of a layer of cells within the metal that are given a finite conductivity. Resolving the skin depth in these cells may require using cells that are much smaller than those in the rest of the problem domain. This may reduce performance by requiring a smaller time step to satisfy the Courant condition. It also adds complexity to the code and to required input. Using a surface boundary condition (rather than a volume boundary condition) is potentially more efficient and easier to implement and use. This type of boundary often suffers the difficulty of requiring a time history of the magnetic field which for problems with large boundaries and/or many time cycles can lead to prohibitively large memory requirements. We propose a finite conductivity surface boundary condition that is easy to implement and has very little computational overhead. Preliminary tests show the method to be stable and to damp fields in a predictable way. However, quantitative agreement with analytic theory for simple test problems requires the use of a non-physical problem-specific parameter by the user
    No preview · Conference Paper · Jul 1998
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Minimally invasive thermal therapy as local treatment of benign and malignant diseases has received increasing interest in recent years. Safety and efficacy of the treatment require accurate temperature measurement throughout the thermal procedure. Noninvasive temperature monitoring is feasible with magnetic resonance (MR) imaging based on temperature-sensitive MR parameters such as the proton resonance frequency (PRF), the diffusion coefficient (D), T1 and T2 relaxation times, magnetization transfer, the proton density, as well as temperature-sensitive contrast agents. In this article the principles of temperature measurements with these methods are reviewed and their usefulness for monitoring in vivo procedures is discussed. Whereas most measurements give a temperature change relative to a baseline condition, temperature-sensitive contrast agents and spectroscopic imaging can provide absolute temperature measurements. The excellent linearity and temperature dependence of the PRF and its near independence of tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI imaging techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.
    Preview · Article · Feb 2008 · Journal of Magnetic Resonance Imaging
Show more