Analysis of complex chromosomal aberrations in patients with myelodysplastic syndromes using multiplex fluorescence in situ hybridization combined with whole chromosome painting

    Abstract

    To explore the value of multiplex fluorescence in situ hybridization (M-FISH) in combination with whole chromosome painting (WCP) in the detection of complex chromosomal aberrations (CCAs) in myelodysplastic syndromes (MDS).
    M-FISH was used in seven MDS patients with R-banding CCAs to refine the complex chromosomal rearrangements, and to identify cryptic translocations and characterization of marker chromosomes. Dual-color WCP procedures were further performed in 7 cases to confirm some rearrangements detected by M-FISH.
    M-FISH confirmed all results of R-banding. The composition and origin of 6 kinds of marker chromosomes, 9 kinds of chromosomes with additional material undetermined and 5 kinds of derivative chromosomes undefined by conventional cytogenetics (CC) were defined after M-FISH analysis; four kinds of cryptic translocations overlooked by CC were found on derivative chromosomes and previously normal appearing chromosomes. In addition, M-FISH revealed some nonrandom aberrations: aberrations involving chromosome 17 and -5/5q- were the two most frequent aberrations. Some misclassified and missed chromosomal aberrations by M-FISH were corrected by WCP.
    M-FISH is a powerful molecular cytogenetic tool in clarification of CCAs. Complementary WCP helps us to identify misclassified and missed chromosomal aberrations by M-FISH. CC in combination with molecular cytogenetic techniques, such as M-FISH and WCP, can unravel complex chromosomal aberrations more precisely.