Low-dose dietary chlorophyll inhibits multi-organ carcinogenesis in the rainbow

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
Food and Chemical Toxicology (Impact Factor: 2.9). 04/2008; 46(3):1014-24. DOI: 10.1016/j.fct.2007.10.034
Source: PubMed


We recently reported that chlorophyll (Chl) strongly inhibits aflatoxin B(1) preneoplasia biomarkers in rats when administered by co-gavage (Simonich et al., 2007. Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat. Carcinogenesis 28, 1294-1302.). The present study extends this by examining the effects of dietary Chl on tumor development, using rainbow trout to explore ubiquity of mechanism. Duplicate groups of 140 trout were fed diet containing 224 ppm dibenzo[a,l]pyrene (DBP) alone, or with 1000-6000 ppm Chl, for 4 weeks. DBP induced high tumor incidences in liver (51%) and stomach (56%), whereas Chl co-fed at 2000, 4000 or 6000 ppm reduced incidences in stomach (to 29%, 23% and 19%, resp., P<0.005) and liver (to 21%, 28% and 26%, resp., P<0.0005). Chlorophyllin (CHL) at 2000 ppm gave similar protection. Chl complexed with DBP in vitro (2Chl:DBP, K(d1)=4.44+/-0.46 microM, K(d2)=3.30+/-0.18 microM), as did CHL (K(d1)=1.38+/-0.32 microM, K(d2)=1.17+/-0.05 microM), possibly explaining their ability to inhibit DBP uptake into the liver by 61-63% (P<0.001). This is the first demonstration that dietary Chl can reduce tumorigenesis in any whole animal model, and that it may do so by a simple, species-independent mechanism.

Download full-text


Available from: Michael T Simonich
  • Source
    • "A substantial number of studies have demonstrated the chemopreventive efficacy of chlorophyllin and ellagic acid in various animal tumour models [16]–[18], [20], [21]. We report for the first time the inhibition of DMBA-induced HBP carcinogenesis by dietary supplementation of chlorophyllin and ellagic acid based on reduced incidence of preneoplastic and neoplastic lesions, and changes in the expression pattern of genes associated with carcinogenic signaling. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.
    Full-text · Article · Apr 2012 · PLoS ONE
  • Source
    • "During treatment and prior to sampling, diet was fed at a rate of 2% body weight per day. Dose ranges for DBC and Chl concentrations were chosen based on previous studies (Reddy et al., 1999; Pratt et al., 2007; Simonich et al., 2008). (Note: DBC is a potent carcinogen; it was handled, stored, and disposed in compliance with NIH and Oregon State University guidelines for extreme hazard class of carcinogens). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent pilot studies found natural chlorophyll (Chl) to inhibit carcinogen uptake and tumorigenesis in rodent and fish models, and to alter uptake and biodistribution of trace (14)C-aflatoxin B1 in human volunteers. The present study extends these promising findings, using a dose-dose matrix design to examine Chl-mediated effects on dibenzo(def,p)chrysene (DBC)-induced DNA adduct formation, tumor incidence, tumor multiplicity, and changes in gene regulation in the trout. The dose-dose matrix design employed an initial 12,360 rainbow trout, which were treated with 0-4000ppm dietary Chl along with 0-225ppm DBC for up to 4weeks. Dietary DBC was found to induce dose-responsive changes in gene expression that were abolished by Chl co-treatment, whereas Chl alone had no effect on the same genes. Chl co-treatment provided a dose-responsive reduction in total DBC-DNA adducts without altering relative adduct intensities along the chromatographic profile. In animals receiving DBC alone, liver tumor incidence (as logit) and tumor multiplicity were linear in DBC dose (as log) up to their maximum-effect dose, and declined thereafter. Chl co-treatment substantially inhibited incidence and multiplicity at DBC doses up to their maximum-effect dose. These results show that Chl concentrations encountered in Chl-rich green vegetables can provide substantial cancer chemoprotection, and suggest that they do so by reducing carcinogen bioavailability. However, at DBC doses above the optima, Chl co-treatments failed to inhibit tumor incidence and significantly enhanced multiplicity. This finding questions the human relevance of chemoprevention studies carried out at high carcinogen doses that are not proven to lie within a linear, or at least monotonic, endpoint dose-response range.
    Full-text · Article · Nov 2011 · Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association
  • Source

    Preview · Article ·
Show more

Similar Publications