Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension

Department of Pediatric Cardiology, University of Colorado Health Sciences Center, Denver, CO, USA.
American heart journal (Impact Factor: 4.46). 02/2008; 155(1):166-74. DOI: 10.1016/j.ahj.2007.08.014
Source: PubMed


Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR.
Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms.
Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131).
Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient outcomes compared with PVR alone.

Download full-text


Available from: Kendall S Hunter
    • "During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) become stiffer due to extrinsic and intrinsic remodeling including arterial wall thickening (extrinsic remodeling) and increased elastic modulus (intrinsic remodeling) [1] [2] [3] [4] [5] [6] [7]. Arterial stiffening can increase right ventricular (RV) afterload, which causes RV hypertrophy and eventually RV failure [8] [9] [10] [11] [12] [13] [14]. Clinical studies have found that proximal PA stiffness and its inverse, compliance, are strongly related to mortality in patients with PH [12,15–20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Statement of significance: The literature has proposed several constitutive models to describe the mechanical effects of arterial collagen but none separates collagen content from crosslinking. Given that both are critical to arterial mechanics, the novel model described here does so. Furthermore, our novel model is well tested by experimental data; model parameters were reasonably correlated with measured collagen content and crosslinking and the model-predicted collagen transition stretch was consistent with that obtained experimentally. Given that arterial collagen structural changes and collagen engagement are critical to arterial stiffening in several disease states, this model, by linking mechanical and biological properties, may allow us to predict important biological changes during disease progression from measured mechanical behavior.
    No preview · Article · Nov 2015 · Acta biomaterialia
  • Source
    • "However, we found PACi did not have superiority for predicting mortality compared to other commonly collected measures. It is possible that a measure of total right ventricular afterload, pulmonary vascular input impedance [47], may be a good predictor of survival, but we were unable to measure impedance in all patients. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although many predictors have been evaluated, a set of strong independent prognostic mortality indicators has not been established in children with pediatric pulmonary arterial hypertension (PAH). The aim of this study was to identify a combination of clinical and molecular predictors of survival in PAH. This single-center, retrospective cohort study was performed from children with PAH between 2001 and 2008 at Children's Hospital Colorado. Blood samples from 83 patients (median age of 8.3 years-old) were obtained. We retrospectively analyzed 46 variables, which included 27 circulating proteins, 7 demographic variables and 12 hemodynamic and echocardiographic variables for establishing the best predictors of mortality. A data mining approach was utilized to evaluate predictor variables and to uncover complex data structures while performing variable selection in high dimensional problems. Thirteen children (16%) died during follow-up (median; 3.1 years) and survival rates from time of sample collection at 1 year, 3 years and 5 years were 95%, 85% and 79%, respectively. A subset of potentially informative predictors were identified, the top four are listed here in order of importance: Tissue inhibitors of metalloproteinases-1 (TIMP-1), apolipoprotein-AI, RV/LV diastolic dimension ratio and age at diagnosis. In univariate analysis, TIMP-1 and apolipoprotein-AI had significant association with survival time (hazard ratio [95% confidence interval]: 1.25 [1.03, 1.51] and 0.70 [0.54-0.90], respectively). Patients grouped by TIMP-1 and apolipoprotein-AI values had significantly different survival risks (p<0.01). Important predictors of mortality were identified from a large number of circulating proteins and clinical markers in this cohort. If confirmed in other populations, measurement of a subset of these predictors could aid in management of pediatric PAH by identifying patients at risk for death. These findings also further support a role for the clinical utility of measuring circulating proteins.
    Full-text · Article · Nov 2013 · PLoS ONE
  • Source
    • "The definitions of mPAP and PP are similar to those of mean and pulse WSS. Details regarding the calculation of impedance from pressure and flow waveforms may be found in our previous works [11, 28, 33]. RV power (the rate of ventricular work) comprises potential energy and kinetic energy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a simple computational model based on measurements from a hypoxic neonatal calf model of pulmonary hypertension (PH) to investigate the interplay between vascular and ventricular measures in the setting of progressive PH. Model parameters were obtained directly from in vivo and ex vivo measurements of neonatal calves. Seventeen sets of model-predicted impedance and mean pulmonary arterial pressure (mPAP) show good agreement with the animal measurements, thereby validating the model. Next, we considered a predictive model in which three parameters, PVR, elastic modulus (EM), and arterial thickness, were varied singly from one simulation to the next to study their individual roles in PH progression. Finally, we used the model to predict the individual impacts of clinical (vasodilatory) and theoretical (compliance increasing) PH treatments on improving pulmonary hemodynamics. Our model (1) displayed excellent patient-specific agreement with measured global pulmonary parameters; (2) quantified relationships between PVR and mean pressure and PVS and pulse pressure, as well as studiying the right ventricular (RV) afterload, which could be measured as a hydraulic load calculated from spectral analysis of pulmonary artery pressure and flow waves; (3) qualitatively confirmed the derangement of vascular wall shear stress in progressive PH; and (4) established that decreasing proximal vascular stiffness through a theoretical treatment of reversing proximal vascular remodeling could decrease RV afterload.
    Full-text · Article · Nov 2013 · Computational and Mathematical Methods in Medicine
Show more