Jones DL, Wagers AJNo place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11-21

Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Nature Reviews Molecular Cell Biology (Impact Factor: 37.81). 02/2008; 9(1):11-21. DOI: 10.1038/nrm2319
Source: PubMed


Stem cells are rare cells that are uniquely capable of both reproducing themselves (self-renewing) and generating the differentiated cell types that are needed to carry out specialized functions in the body. Stem cell behaviour, in particular the balance between self-renewal and differentiation, is ultimately controlled by the integration of intrinsic factors with extrinsic cues supplied by the surrounding microenvironment, known as the stem cell niche. The identification and characterization of niches within tissues has revealed an intriguing conservation of many components, although the mechanisms that regulate how niches are established, maintained and modified to support specific tissue stem cell functions are just beginning to be uncovered.

Full-text preview

Available from:
    • "Another study was performed by Beuth in 1993, where they found that the mediators for adhesion of both CTCs and bacteria were lectins, which could explain why some CSCs are selective for certain tissues while others are not (Beuth et al., 1993). The fact that so many CTCs are produced while only a small fraction are able to metastasize, all being in specific niches, leads to the suggestion that there is something unique going on that is not being considered (Cristofanilli et al., 2004; Jones and Wagers, 2008). This is why this review suggests that bacteria potentially contribute to where the CTCs metastasize (see Fig. 6). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Jul 2015 · Environmental Research
  • Source
    • "Increasing evidence supports the notion that innervation also plays an active role in regulating differentiation and mobilisation of stem cells (Jones and Wagers, 2008; Pagella et al., 2014a). In the orofacial region, innervation is strictly required for salivary gland morphogenesis (Knox et al., 2010; Pagella et al., 2014a) and taste buds development and maintenance (Oakley and Witt, 2004; Pagella et al., 2014a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell-based mediated therapies represent very promising approaches for tissue regeneration and are already applied with success in clinics. These therapeutic approaches consist of the in vitro manipulation of stem cells and their consequent administration to patients as living and dynamic biological agents. Nevertheless, the deregulation of stem cells function might result in the generation of pathologies such as tumours or accelerated senescence. Moreover, different stem cells sources are needed for regeneration of specific tissues. It is thus fundamental to understand the mechanisms regulating the physiology of stem cells. Microfluidic technology can be used to mimic in vivo scenarios and allow the study of stem cell physiology at both single cell and whole stem cell niche levels.This review focuses on the potential sources of stem and progenitor cells for orofacial regeneration and the use of microfluidic technologies for the study of stem cells behaviour and stem cell niches, in the light of regenerative medicine.
    Full-text · Article · Mar 2015 · European cells & materials
  • Source
    • "In this regard, recent studies provide strong evidence that the niche is composed of both soluble factors and ECM macromolecules that direct cell fate (Brown and Badylak, 2014). Thus, the niche represents a specialized local microenvironment that contributes to the establishment and maintenance of the stem cell phenotype and stem cell differentiation (Jones and Wagers, 2008). Indeed, the use of ECM-derived scaffolds in tissue engineering is strictly dependent on its niche properties in stem cell recruitment and differentiation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting.
    Full-text · Article · Jun 2014 · Frontiers in Physiology
Show more